§5 THE FIELD OF QUOTIENTS

3. Which of \(\mathbb{Z}_3, \mathbb{Z}_4, \mathbb{Z}_5, \) and \(\mathbb{Z}_6 \) are fields, and why?
4. Show that any finite integral domain is a field.
5. Show that every subring of a field is an integral domain.
6. Show that a subset of a finite field is a subfield if and only if it is closed under addition and multiplication and contains more than one element.
7. Show that any morphism \(\alpha : F \to F' \) of fields is a morphism of quotients, in the sense that \(b \neq 0 \) and \(a \) in \(F \) give \(\alpha(a/b) = (aa)/(ab) \) in \(F' \).
8. Assume that \(\mathbb{Q} \subset \mathbb{R} \) are fields:
 (a) Prove for \(d = 7 \) or \(11 \) that the set \(\mathbb{Q}(\sqrt{d}) \) of all real numbers \(a + b\sqrt{d} \) for \(a, b \in \mathbb{Q} \) is a field.
 (b) Show that the function \(a + b\sqrt{7} \mapsto a + b\sqrt{11} \) is not an isomorphism \(\mathbb{Q}(\sqrt{7}) \cong \mathbb{Q}(\sqrt{11}) \).
 *(c) Prove that there is no isomorphism \(\mathbb{Q}(\sqrt{7}) \cong \mathbb{Q}(\sqrt{11}) \) of fields.

5. The Field of Quotients

The integral domain \(\mathbb{Z} \) is not itself a field, but it is contained in the familiar field \(\mathbb{Q} \) of all rational numbers. Now each rational number \(x = m/n \), for \(m, n \in \mathbb{Z} \) and \(n \neq 0 \), may be described as the solution \(x \) in \(\mathbb{Q} \) of the equation \(nx = m \) with coefficients \(m \) and \(n \) in \(\mathbb{Z} \). This suggests that the field \(\mathbb{Q} \) might be formally constructed from \(\mathbb{Z} \) as the set of all solutions \(m/n \) to such equations. The field \(\mathbb{Q} \) so constructed will turn out to be the "smallest" field containing \(\mathbb{Z} \).

This construction of a field of quotients applies not just to the domain \(\mathbb{Z} \) of integers, but to any integral domain \(D \); it will embed that domain \(D \) in a field \(\mathbb{Q}(D) \), the field of quotients of \(D \), which may be described as follows.

Theorem 12. For each integral domain \(D \) there is a field \(\mathbb{Q}(D) \) and a monomorphism \(j : D \to \mathbb{Q}(D) \) of rings such that every element \(x \in \mathbb{Q}(D) \) is a quotient \((ja)/(jb) \), where \(a \) and \(b \neq 0 \) are elements of \(D \). Moreover, any monomorphism \(\alpha : D \to F \) on \(D \) to a field can be written as a composite \(\alpha = \alpha' \circ j \) for a unique morphism \(\alpha' : \mathbb{Q}(D) \to F \) of fields.

Proof: Since the elements of the field \(\mathbb{Q}(D) \) are to be quotients \(a/b \) of elements \(a \) and \(b \neq 0 \) of \(D \), we start with all such pairs \((a, b) \), introduce for them an equality like the equality of quotients \(a/b \), and define for them operations of addition and multiplication by the formulas (20) and (21) used for sums and products of actual quotients.

In detail, let \(D^* \) be the set of all non-zero elements of \(D \). In the product set \(D \times D^* \) define a relation of congruence by

\[
(a, b) \equiv (a', b') \iff ab' = a'b. \tag{24}
\]