Theorem. Suppose \(U \) is a set in \(\mathbb{R}^2 \)

\[U \text{ irreducible } \iff \mathcal{I}(U) \text{ is a prime ideal.} \]

\[\mathcal{I}(U) = \frac{k[x_1, \ldots, x_n]}{\mathcal{I}(U)} \text{ in an int. domain} \]

If \(R \) is a commutative ring with unity and \(\mathcal{I} \) is an ideal

then \(\frac{R}{\mathcal{I}} \) is a field \(\iff \mathcal{I} \) is max

and \(\frac{R}{\mathcal{I}} \) is an int. domain \(\iff \mathcal{I} \) is prime.

An ideal \(\mathcal{I} \) is prime means:

\[ab \in \mathcal{I} \iff a \in \mathcal{I} \text{ or } b \in \mathcal{I} \]

\[a \notin \mathcal{I}, b \notin \mathcal{I} \Rightarrow ab \notin \mathcal{I} \]

i.e. \(R \setminus \mathcal{I} \) is closed under multiplication.
Pf: Suppose U is an irreducible algebraic set.

and $p, q \in k[x_1, \ldots, x_n]$, $pq \in \mathcal{I}(U)$

$U \subseteq V(pq) = V(p) \cup V(q)$

$U = (V(p) \cap U) \cup (V(q) \cap U)$

One of these \uparrow say $V(p) \cap U = U$

Then $p \in \mathcal{I}(U)$.

Now assume $\mathcal{I}(U)$ is prime and

$U = U_1 \cup U_2$, $U_i \neq U$

\Rightarrow alg. since

$U_i \not\subseteq U \Rightarrow \mathcal{I}(U) \not\subseteq \mathcal{I}(U_i)$

Pick $p_i \in \mathcal{I}(U_i) \setminus \mathcal{I}(U)$

p_1p_2 vanishes on $U \Rightarrow p_1p_2 \in \mathcal{I}(U)$.

\[NAF: \Gamma(k^n) = \frac{k[x_1, \ldots, x_n]}{\mathcal{I}(k^n)} = k[x_1, \ldots, x_n] - \text{int. domain} \]

so k^n is irreducible.

Density argument: if $p \in \mathcal{I}$ (nonempty Zariski open set)

then $p = 0$.

Let \(U \) be an algebraic set \(\neq k^n \).

Suppose \(p \) vanishes in \(k^n \setminus U \).

\[k^n \setminus U \subseteq \nu(p) \]

\[k^n = (k^n \setminus U) \cup U \subseteq \nu(p) \cup U \]

\[k^n = \nu(p) \cup U \cap \text{irred.} \]

Given a topological space \(X \) and a subset \(Y \), we topologize \(Y \) by saying \(U \subseteq Y \) is open whenever \(\exists U' \text{ open } \subseteq X \) \(U = U' \cap Y \).

This called relative top.

Given \(Y \subseteq X \), closure \(\overline{Y} = \bigcap \{ Z \subseteq X \mid Z \text{ closed } \} \)

Note: \(\overline{Y} \) is closed

\[\overline{Y} \text{ is closed} \]

Theorem: \(Y \) irreducible \(\Rightarrow \overline{Y} \) is irreducible.

If \(Y \) irreducible \(\Rightarrow \overline{Y} \) is irreducible.

Suppose \(\overline{Y} = U_1 \cup U_2 \)

\(\subseteq \nabla \text{alg. set (closed in } \overline{Y} \) \)

\(\Rightarrow \text{ closed in } X \)
Lemma: If \(A \subseteq B \) and \(B \subseteq C \),

then \(A \) is closed in \(C \).

\[\text{If } B \setminus A \subseteq B \]
\[\exists \; \exists u \subseteq C \quad u \cap B = B \setminus A \]

WTS: \((C \setminus u) \cap B = A \)

\[(C \setminus u) \cap B = (C \cap B) - (u \cap B) \]
\[= B - (B - A) \]
\[= A \]

\[\overline{Y} = \cup_i u_i \cup u_2 \]
\[Y = (u_1 \cap Y) \cup (u_2 \cap Y) \]

Y irredu. \(\Rightarrow \) \(\exists j \quad Y = U_j \cap Y \)

\(Y \subseteq U_j \subseteq \text{closed in } X \)

\[\therefore \quad \overline{Y} = \bigcap Z \subseteq U_j \ni \text{one of the } Z's! \]

\[\overline{Y} \subseteq Z \quad Z \subseteq X \quad Y \subseteq Z \]

\[\therefore \quad \overline{Y} \subseteq U_j \]
\[\therefore \quad \overline{Y} = U_j \cup \]
Given an alg. set \(U \neq \emptyset \in k^n \)

Thus \(U = U_1 U_2 \ldots U_m \) where \(U_i \) are irreducible alg. sets essentially uniquely.

Existence: Let \(S = \{ \text{alg. set : existence fails} \} \)

Let \(\mathcal{I} = \{ \Sigma(U) : U \in S \} \)

Since \(\mathcal{B} = \{ k_1 \ldots k_n \} \) is Noetherian, \(\mathcal{I} \) has a maximal element \(\Sigma(W) \)

Pick an ideal \(J_1 \in \mathcal{I} \)

- If \(J_1 \) is not maximal, then \(\exists J_2 \in \mathcal{I} \)

\[J_1 \subsetneq J_2 \subsetneq J_3 \subsetneq J_4 \]

\(\vdots \)

non-terminating chain \(\hat{\circ} \)

If \(W \) is irreducible, done.

So assume \(W = W_1 U W_2 \), \(W_1 \subset W \), \(W_2 \subset \neq W \)

\(W_1 \subset W \implies \Sigma(W) \subset \Sigma(W_i) \) (maximality)

\(W_i \notin \mathcal{I} \)

\(W_1 \notin \mathcal{I} \)

\(W_2 \notin \mathcal{I} \)

\(W_2 = V_1 \ldots V_{n_2} \)
\[W = W_1 \cup \ldots \cup W_k = u_1 \cup \ldots \cup u_r \cup v_1 \cup \ldots \cup v_k \]

\[\iff W \in \mathcal{I} \]

\[u = u_1 \cup \ldots \cup u_r \]
\[= W_1 \cup \ldots \cup W_k \]

\[u_1 = u \cap u_1 = (W_1 \cap u_1) \cup \ldots \cup (W_k \cap u_1) \]

Since \(u_1 \) is irreducible, \(\exists j \) \(u_1 = W_j \cap u_1 \)

\[u_1 \subseteq W_j \subseteq u_1 \]

\[u_1 \subseteq u_j \Rightarrow i = 1 \]

\[u_1 \subseteq W_j \subseteq u_1 \]

\[\therefore u_1 = W_j \]

If \(W \subseteq U \) (alg. size) \(U = u_1 \cup \ldots \cup u_r \)

and \(W \) is irreducible.

\[W = (u_1 \cap W) \cup \ldots \cup (u_r \cap W) \]

\[\exists i \ W = u_i \cap W \]

\[W \subseteq u_i \]

\[\therefore \]
Localization

Suppose R is an integral domain.

$A \subseteq R$ that is closed under multiplication.

Let $S = \{ [x, a] : x \in R, a \in A \}$

Define $[x, a] \sim [x', a']$

whenever $xa' = ax'$

Think:

$\frac{x}{a} = \frac{x'}{a'}$

Ex.

$\mathbb{Q}[\sqrt{2}]$ is an integral domain

with operations

$[x, a][x', a'] = [xx', aa']$

$[x, a] - [x', a'] = [xa' - ax', aa']$

Injection $R \rightarrow \frac{S}{\sim} = A^{-1}R$

$x \mapsto [ax, a]$ for some $a \in A$.

(well defined)
Exp. \(A = R \setminus I \) if \(I \) is a prime ideal.

If \(A = R \setminus \{0\} \), then the field of quotients

\((R \text{ int. dom } = \Rightarrow \{0\} \text{ is a prime ideal}) \)

If \(A \subseteq R^* \), then you just get \(R \) back.

Let \(x \in R \), let \(A = \{1, x, x^2, x^3, \ldots \} \)

\(x \neq 0 \)