2. Let V be an affine algebraic set in \mathbb{K}^n, and consider $x \not\in V$. Show that there is an $F \in \mathbb{K}[x_1, \ldots, x_n]$ such that $F(x) = 0$ and $F|_V = 0$.

$$V \subseteq \bigcup_{x \in \mathbb{K}^n} \{ x \} \quad \text{is closed, so } \bigcup_{x \in \mathbb{K}^n} \{ x \} \text{ is closed}$$

$$\mathcal{I}(\bigcup_{x \in \mathbb{K}^n} \{ x \}) \neq \mathcal{I}(V)$$

In particular, there exists an $F \in \mathcal{I}(V) - \mathcal{I}(\bigcup_{x \in \mathbb{K}^n} \{ x \})$.

Then $F|_V = 0$ and $F|_{\bigcup_{x \in \mathbb{K}^n} \{ x \}} \neq 0$. So

$$F(x) \neq 0.$$ Let $\overline{f} = \frac{F}{F(x)}$. \(\Box\)

3. Let $F \in \mathbb{K}[X,Y]$ be an irreducible polynomial. Assume $V(F)$ is infinite. Prove that

$$\mathcal{I}(V(F)) = (F).$$

Clearly $F \in \mathcal{I}(V(F))$, so $(F) \subseteq \mathcal{I}(V(F))$. Fix $g \in \mathcal{I}(V(F))$. Then

$$V((f,g)) = V(f) \cap V(g) = V(f)$$ since $V(g) \neq V(f)$. \(\Box\)
\[V(g) = V(f) \cup F_i \cup \cdots \cup F_m \]

where \(F_i \) are closed sets and irreducible.

To be continued...

4. (a) If \(X \) is irreducible and \(U \) is an open subset of \(X \), show that \(U \) is irreducible.

Proof:

Let \(X \) be irreducible and assume, to the contrary, that \(U \) is not irreducible. Let \(V_1, V_2 \subset U \) be nonempty open subsets of \(U \) such that \(V_1 \cap V_2 = \emptyset \). Then \(V_1, V_2 \) open \(\subset X \), with \(V_1 \cap V_2 = \emptyset \), and since \(X \) is irreducible, \(V_1 = \emptyset \) or \(V_2 = \emptyset \).

So, \(U \) is irreducible.
Let \(W \) be an algebraically closed field. Then \(I(W) \) is maximal among the ideals of \(\Gamma(W) \).

\(\Leftrightarrow \Gamma(W) \) is a field.

Actually, \(\Gamma(W) = k \)

(see proof of Nullstellensatz)

Suppose \(W = \{ \bar{a} \} \)

and \(I(W) \not\trianglelefteq J \)

\[W = V(I(W)) \supsetneq V(J) \]

\[\therefore V(J) = \emptyset \]

\[\sqrt{J} = I(V(J)) = I(\emptyset) = k[x_1 \ldots x_n] \]

\[\therefore 1 \in \sqrt{J} \Rightarrow 1 \in J \Rightarrow J = k[x_1 \ldots x_n] \]

Suppose \(W \) is not a point.

If \(W = \emptyset \), then \(I(W) = k[x_1 \ldots x_n] \)

\[\therefore I(W) \) is not maximal.

If \(W \neq \emptyset \), \(\exists \bar{a} \in W \)

\(\{ \bar{a} \} \not\subseteq W \) (since \(W \) is not a pt.)

\[I(\{ \bar{a} \}) \supsetneq I(W) \not\trianglelefteq \text{maximal} \]

\(\text{maximal ideal } \langle x_1 - a_1, \ldots, x_n - a_n \rangle \)
Theorem: \(\dim U \text{ finite } \iff \Gamma(U) \text{ is f.d. over } \mathbb{k} \).

Proof: Let \(U = \{ \bar{u}_1, \ldots, \bar{u}_n \} \subset \mathbb{k}^n \).

Given \(p \in \mathbb{k}[x_1, \ldots, x_n] \),

define \(\varphi(p) \in \mathbb{k}^n \) by \(\varphi(p)_i = p(\bar{u}_i) \).

\(\ker \varphi = \{ p : p(\bar{u}_i) = 0 \text{ for all } i \} = I(U) \)

\(\Gamma(U) = \frac{\mathbb{k}[x_1, \ldots, x_n]}{I(U)} = \frac{\mathbb{k}[x_1, \ldots, x_n]}{\ker \varphi} \cong \text{Im}(\varphi) \subset \mathbb{k}^n \).

Suppose \(\Gamma(U) \text{ is f.d.} \)

\[\mathbb{k}[x_1, \ldots, x_n] \rightarrow \frac{\mathbb{k}[x_1, \ldots, x_n]}{I(U)} = \Gamma(U) \]

\[x_i \rightarrow \bar{x}_i \]

\[\{ 1, \bar{x}_1, \bar{x}_2^2, \ldots \} \subset \Gamma(U) \implies \text{f.d.} \]

\[\text{linearly dep. } \implies \exists \text{ nontriv. relation} \]

\[a_0 + a_1 \bar{x}_1 + \cdots + a_s \bar{x}_i^s = 0 \]

\[\bar{x}_i(\bar{u}) = u_i \quad (\text{for } \bar{u} \in U) \]
\[a_0 + a_1 u_1 + \ldots + a_5 u_5^5 = 0 \]

works for only finitely many \(u_1 \)’s.

\[\text{only finitely many } u_1 \text{'s.} \]