\[f(x) \neq 0 \text{ for some } x \in \Omega, \text{ so each } f_i \text{ has only finitely many roots.} \]

Since the zero set \(\Omega \) is locally finite, for each \(x \in \Omega \) there is an \(\epsilon > 0 \) such that \(f_i \) vanishes outside \(U_i \) and \(\bigcap_{j \neq i} U_j \cap (x - \epsilon, x + \epsilon) = \emptyset \).

We want functions \(f_i : M \to \mathbb{R} \), \(f_i \geq 0 \).

Eulerian Realizer: \(M \)

Any \(x \in \Omega \) is in only finitely many \(U_i \) and each \(f_i \) forms a smooth manifold \(\text{Partitions of Unity} \)

\[f \]
\[
\int g(x)\, dx = \int g(x) \cdot 1 \, dx = \int g(x) \cdot f'(x) \, dx
\]

(01 Fru Integrate)

are not smooth

Example: Let \(f(x) = x^2 \). This works, but is bad, since \(f'(x) \) is not constant.

\[
\int f(x) \, dx \leq \int f'(x) \, dx \\
\frac{f(x)}{f'(x)} \leq \frac{f(x)}{f'(x)}
\]

since \(f(x) \geq 1 \) when \(f(x) > 0 \), we are still ok. Because we can re-define

\[
\frac{f'(x)}{f(x)} = 1 + \theta
\]

Note: If we relax the condition \(\frac{f'(x)}{f(x)} = 1 \),
Note:

\[\lim_{x \to c} f(x) = L \]

Let
\[f(x) = \begin{cases} \frac{c}{x} & \text{if } x \neq 0 \\ L & \text{otherwise} \end{cases} \]

Example of a smooth function on \(\mathbb{R} \):

\[\int_{\mathbb{R}} \varphi(x) f(x) \, dx = \int_{\mathbb{R}} \varphi(x) \left(\frac{c}{x} \right) \, dx = 2 \]
Theorem \(T : \exists \delta > 0 \text{ s.t.} \)

Let \(\delta \) be the corner bump.

Cover \(Y \) with overlapping intervals.

\[
\begin{align*}
\forall x \in Y, \quad & \exists \eta \in (x - \delta, x + \delta) \\
\therefore g \circ f & = \eta
\end{align*}
\]