Then $N \subseteq M \iff \forall M / \bar{M}$ is finite.

Proof: Let $N = \langle x_1, x_2, \ldots, x_n \rangle$ (w.a.t., $N=M$).

Let $\{x_i + J_M \}_{i=1}^n$ be a basis for the space. Then $\{x_i + J_M \}_{i=1}^n$ generates M.

$$J_M = \frac{J_M}{J_M} = \frac{J_M}{J_M} = 0$$

J_M is a trivial R-module. Then M is annihilated by J_M.

Hence M / J_M is a $f.g.$ R-module. Then M is annihilated by J_M.

Result: Field: $K = \frac{R}{J_M}$

Suppose R is a local ring with maximal J_M. Then

$R/kahana 2$
\[\sin x \neq R(x), \quad M = N \]

So, \(N + 2M = M \), so by Case 1, \(M = 0 \),

\[(\text{because } M(x) \text{ is a high-pass filter}) \]