1. An exponentially growing yeast culture doubles in 7 days. How long would it take it to quadruple in size?

2. A population of bacteria grows exponentially according to $b(t) = e^{2t}$. Find and illustrate on a graph
 (a) Population at $t = 0$ and $t = 1$.
 (b) The average rate of change between $t = 0$ and $t = 1$.
 (c) The instantaneous rates of change at $t = 0$ and $t = 1$.

3. Find the derivatives of
 (a) $\cos(1 + e^{2x})$
 (b) $\ln(\ln x)$

4. Find the second derivative of the Hill function $x^2/(1 + x^2)$ and use it to describe the curvature of the Hill function's graph.

5. The amount of medication M_t in the bloodstream of a patient on an intravenous drip is governed by the discrete dynamical system $M_{t+1} = M_t - f(M_t)M_t + d$, where d is the rate of delivery through the drip and $f(M_t)$ is the fraction of the medication absorbed by the patient. If $f(M_t) = M_t/(2 + M_t)$ and $d = 1$, find the biologically significant equilibrium and determine its stability.

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>total (50)</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Prelim. course grade: %