1. A radioactive isotope has a half-life of 8 days. If the initial amount is 5 grams, how long will it take for the amount to decrease to 2 grams?

2. Find the derivatives of
 (a) \(\cos(1 + e^{2x}) \)
 (b) \(\frac{\ln x}{2x + 1} \)

3. For the Ricker model for fish population \(x_{t+1} = r x_t e^{-2x_t} \) find the equilibria. For which values of \(r \) is each equilibrium stable? Unstable?

4. Let \(f(t) = t - t^3 \). Find all the critical points of \(f \) on the interval \(0 \leq t \leq 2 \). Use the second derivative to determine concavity at the critical points. Find the global minimum and the global maximum of \(f \) on the interval. Where do they occur?

5. Find indefinite integrals of the following functions
 (a) \(\frac{1}{x \ln x} \)
 (b) \(t^2 \sin(3t) \)

6. Determine whether the improper integral \(\int_0^1 \frac{1}{\sqrt{x} + \sqrt{x}} \, dx \) converges by comparing it to an integral which can be computed explicitly.

7. For the autonomous differential equation \(\frac{dx}{dt} = x - ax^3 \), where \(a \) is a positive constant, draw the phase-line diagram, find the equilibria, and determine their stability, both from the diagram and by using the stability theorem.

8. Solve the differential equation \(\frac{dh}{dt} = -h^2 \) with initial condition \(h(0) = 3 \). Sketch a graph of the solution \(h(t) \) for \(t \geq 0 \). What is the limit of \(h(t) \) as \(t \to \infty \)?

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>total (80)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>