Instructor: D. Gokhman

Name:

1. (30 pts.) Let \(\mathbf{u} = 2 \mathbf{i} + \mathbf{k} \), \(\mathbf{v} = \mathbf{i} - 2 \mathbf{j} \), \(\mathbf{w} = -\mathbf{j} + 5 \mathbf{k} \). Calculate the following:

 (a) \(\mathbf{u} \cdot (\mathbf{v} + 3 \mathbf{w}) \)
 (b) \(\mathbf{u} \cdot (\mathbf{v} \times \mathbf{w}) \)
 (c) \((\mathbf{u} \times \mathbf{v}) \cdot \mathbf{u} \)

 (d) \(|v - w| \)
 (e) \(\text{comp}_u \mathbf{w} \)
 (f) \(\text{proj}_u \mathbf{w} \)

2. (20 pts.) True/false questions. No explanation required.

 T F (a) There are exactly two unit vectors perpendicular to a plane in \(\mathbb{R}^3 \).
 T F (b) If \(\mathbf{u} \times \mathbf{v} = 0 \), then \(u = 0 \) or \(v = 0 \) or \(u \) is perpendicular to \(v \).
 T F (c) The line \(\mathbf{r} (t) = t(-\mathbf{i} - \mathbf{j} - \mathbf{k}) \) is perpendicular to the plane \(x + y + z = -2 \).
 T F (d) The line \(\mathbf{r} (t) = t \mathbf{j} \) lies in the plane \(x + z = 0 \).

3. (40 pts.) Let \(A = 2 \mathbf{i} + \mathbf{k} \), \(B = -\mathbf{i} + 2 \mathbf{j} \), \(C = \mathbf{j} - 3 \mathbf{k} \)

 (a) Find a parametric formula for the line through \(A \) and \(B \).
 (b) Find an equation for the plane through \(C \) perpendicular to the line.
 (c) Find the distance from \(A \) to the plane.
 (d) Find the distance from \(C \) to the line.

4. (40 pts.) Consider the plane curve \(\mathbf{r} (t) = t^2 \mathbf{i} - e^{t^5} \mathbf{j} \).

 (a) Find \(r'(t) \) and \(r''(t) \).
 (b) Find \(r(1) \), \(r'(1) \) and \(r''(1) \).
 (c) Find a parametric formula for the line tangent to \(\mathbf{r} (t) \) at the point \(r(1) \).
 (d) Find a parametric formula for the line perpendicular to \(\mathbf{r} (t) \) at the point \(r(1) \).

5. (30 pts.) Consider the circle of radius 2 centered at \(P = \mathbf{i} - \mathbf{j} \).

 (a) Find a parametric formula for the circle.
 (b) Find all \(x \) intercepts of the circle.
 (c) Pick one of the intercepts and find a parametric formula for the line tangent to the circle at that point.
6. (20 pts.) Compute the limits of the following functions as $(x, y) \to (0, 0)$:

 (a) $x^2 + y^2$
 (b) x^2y^2
 (c) $\frac{xy}{x^2 + y^2}$
 (d) $\frac{x^2y}{x^2 + y^2}$

7. (40 pts.) Let $f(x, y) = x^3 + y^3 + 2xy$.

 (a) Find all the first and second partial derivatives of f.
 (b) Find and classify all critical points of f.
 (c) Find the values of f at all critical points.
 (d) Sketch the traces by the planes $x = 0$ and $x - y = 0$.

8. (20 pts.) Let $f(x, y) = x^2 + y^2$.

 (a) Find an equation for the plane tangent to the graph of f at the point given by $x = 1$, $y = -1$.
 (b) Sketch the level curve going through this point.