1. Find a parametrization for the line of intersection of the planes \(x + 2y + 3z = 6 \) and \(x - y = 0 \). Sketch.

2. The curves \(t \hat{i} + t^2 \hat{j} + t^3 \hat{k} \) and \(\sin(t) \hat{i} + \sin(2t) \hat{j} + t \hat{k} \) intersect at the origin. Find the angle of intersection.

3. Find the limit of \(\frac{xy^3}{x^4 + 2y^4} \) as \((x, y) \to (0, 0) \) or show that the limit fails to exist.

4. Suppose \(f \) is a differentiable function of \(x \) and \(y \) and \(g(u, v) = f(e^u + \sin v, e^u + \cos v) \). Use the table of values to find the directional derivative of \(g \) at the origin along the main diagonal.

 \[
 \begin{array}{c|cccc}
 (x, y) & f & g & f_x & f_y \\
 \hline
 (0, 0) & 2 & 3 & 4 & 5 \\
 (1, 2) & 6 & 7 & 8 & 9 \\
 \end{array}
 \]

5. Integrate \(\frac{x}{1 + xy} \) over the unit square \([0, 1] \times [0, 1]\).