1. (10 pts.) Suppose \(f : A \to B \) and \(g : B \to C \).
 Prove that if \(g \) is 1-1 and \(g \circ f \) is onto, then \(f \) is onto.

2. (20 pts.) Suppose \(f : A \to B \) is onto. Prove or give a counterexample to each of the following statements.
 (a) If \(A \) is countable, then \(B \) is countable.
 (b) If \(B \) is countable, then \(A \) is countable.

3. (20 pts.) Suppose \(A \) is a nonempty bounded subset of \(\mathbb{R} \).
 (a) Prove that \(\text{sup} \ A \) is not an interior point of \(\mathbb{R} \setminus A \).
 (b) Prove that if \(A \) is closed, then \(\text{sup} \ A \in A \).

4. (25 pts.) Prove or disprove that \(A \) is a closed subset of \(\mathbb{R} \), if
 (a) \(A \) is a singleton
 (b) \(A \) is finite
 (c) \(A = \mathbb{Z} \)
 (d) \(A = \mathbb{Q} \)
 (e) \(A = (-\infty, 0] \)
 (f) Extra credit: \(A = \{ \frac{1}{n} : n \in \mathbb{Z}^+ \} \cup \{0\} \)