1. (40 pts.) Find matrices that represent the following linear maps \(f: \mathbb{R}^3 \rightarrow \mathbb{R}^3 \) with respect to the standard basis for \(\mathbb{R}^3 \):

 (a) projection to the \(x-z \) plane,

 (b) reflection with respect to the \(x-z \) plane,

 (c) rotation by \(\pi \) around the \(y \) axis clockwise if you look from the positive \(y \) direction,

 (d) projection to the line \(\ell(t) = t(1, 1, 1) \).

2. (40 pts.) Find the determinants and inverses of the following matrices:

 (a) \[
 \begin{pmatrix}
 0 & 1 & 1 \\
 1 & 0 & 1 \\
 1 & 1 & 0 \\
 \end{pmatrix}
 \]

 (b) \[
 \begin{pmatrix}
 3 & 2 & 1 \\
 0 & 3 & 2 \\
 0 & 0 & 3 \\
 \end{pmatrix}
 \]

3. (30 pts.) Find parametric formulas for the following curves in \(\mathbb{R}^2 \):

 (a) The line through \((-1, 2)\) and \((5, -3)\).

 (b) The circle of radius 5 centered at \((-1, -1)\).

 (c) The parabola \(x = y^2 \).

4. (40 pts.) Suppose that the position of a particle in \(\mathbb{R}^2 \) as a function of time \(t \geq 0 \) is given by \(r(t) = (t \cos(2\pi t), t \sin(2\pi t)) \).

 (a) Sketch the trajectory of the particle.

 (b) Find the velocity as a function of \(t \).

 (c) Find the speed as a function of \(t \) (simplify!).

 (d) Find a parametric formula for the line tangent to the trajectory at the point \(r(1) \).

A useful formula:

Projection of \(u \) to the line through the origin spanned by \(v \neq 0 \) is \(\frac{u \cdot v}{||v||^2} v \).