1. (20 pts.) Let \(P \) be the plane in \(\mathbb{R}^3 \) spanned by \(\mathbf{i} - 3\mathbf{k} \) and \(\mathbf{j} + 2\mathbf{k} \). Let \(p = \mathbf{i} - \mathbf{j} + 2\mathbf{k} \). Let \(L \) be the line through 0 and \(p \). Let \(Q \) be the plane containing \(p \) parallel to \(P \).

 (a) Express \(Q \) and \(L \) in parametric form.
 (b) Express \(Q \) as the locus of a linear equation.
 (c) Is \(L \) perpendicular to \(P \)? Explain.

2. (21 pts.) Sketch the following manifolds and express them in parametric form:

 (a) Straight line in \(\mathbb{R}^3 \) through \(\mathbf{k} \) in the direction \(\mathbf{i} + \mathbf{j} \).
 (b) The ray (half-line) in \(\mathbb{R}^3 \) from 0 in the direction \(-\mathbf{i} - \mathbf{k} \).
 (c) Straight line segment in \(\mathbb{R}^2 \) from \(\mathbf{i} \) to \(\mathbf{j} \).
 (d) The circle in \(\mathbb{R}^2 \) of radius 2 centered at \(0 \).
 (e) The circle in \(\mathbb{R}^2 \) of radius 2 centered at \(\mathbf{i} + 3\mathbf{j} \).
 (f) Right half of the circle in (d).
 (g) Circle in \(\mathbb{R}^3 \) of radius 3 centered at \(\mathbf{j} \) parallel to the \(x-z \) plane.

3. (10 pts.) Let \(v = \mathbf{i} - \mathbf{j} \). Let \(f : \mathbb{R}^3 \rightarrow \mathbb{R} \) be defined by \(f(u) = \text{comp}_v(u) = u \cdot v / |v| \).

 (a) Find the values of \(f \) on the standard basis vectors of \(\mathbb{R}^3 \).
 (b) Is \(f \) is a linear map? Explain.

4. (10 pts.) Let \(g : \mathbb{R}^2 \rightarrow \mathbb{R}^2 \) be the rotation by \(\pi/2 \) with respect to the origin.

 (a) Find the matrix that represents \(g \) with respect to the standard basis.
 (b) Write down the formula for \(g \).

5. (extra credit) Sketch the following parametrized manifolds in \(\mathbb{R}^3 \).

 (a) \(\cos t \mathbf{i} + \sin t \mathbf{j} + t\mathbf{k} \), where \(0 \leq t < \infty \).
 (b) \(\sin \varphi (\cos \theta \mathbf{i} + \sin \theta \mathbf{j}) + \cos \varphi \mathbf{k} \), where \(0 \leq \varphi \leq \pi/2 \), \(-\pi < \theta \leq \pi \).
 (c) \(r(\cos \theta \mathbf{i} + \sin \theta \mathbf{j}) + z\mathbf{k} \), where \(1 \leq r \leq 2 \), \(-\pi/2 \leq \theta \leq \pi/2 \), \(0 \leq z \leq 3 \).