Name: __________________________

Please show all work and justify your answers. Supply brief narration with your solutions and draw conclusions.

1. Let \(\mathbf{r} = [x, y, z] \) and \(r = |\mathbf{r}| \). Express \(\nabla \cdot (r^n \mathbf{r}) \) in terms of \(r \).

2. Let \(\omega = x \, dx + y \, dy + z \, dz \) and \(\eta = (x^2 + yz) \, dy \, dz + (y^2 + zx) \, dz \, dx + (z^2 + xy) \, dx \, dy \).
 Compute \(d\eta \) and \(\omega \wedge \eta \).

3. Given a steady temperature distribution \(f(x, y) = x^y \), how quickly does the temperature change as you start moving from the point \([3, 2]\) towards \([2, 3]\) with speed 5?

4. Use cylindrical coordinates to parametrize the solid cone \(z^2 = x^2 + y^2, \ -1 \leq z \leq 0 \).
 Integrate \((x^2 + y^2 - z^2) \, dx \, dy \, dz \) over this cone.

5. Either find a scalar potential for \([3x^2, z^2/y, 2z \ln y]\) or explain why it fails to exist.

6. Either find a vector potential for \([xy^2z, -y^3z, x^2y + y^2z^2]\) or explain why it fails to exist.

7. Verify the fundamental theorem \(\int_{\Omega} d\omega = \int_{\partial \Omega} \omega \) with \(\omega = xz \, dx + yz \, dy + (x^2 + y^2) \, dz \) and the surface \(\Omega \) given by \(x^2 + y^2 + 2z = 1, \ z \geq 0 \) oriented with the upward normal. Sketch.
 Hint: Parametrize \(\Omega \) using cylindrical coordinates.
 Extra credit: Who first discovered the special case of the fundamental theorem that applies here?

8. Let \(F \) be a smooth vector field on \(\mathbb{R}^3 \) such that the flux of \(F \) through the lateral surface of a cone of volume \(b \) is \(q \). If \(F \) has constant divergence \(c \), what is the flux of \(F \) through the base of the cone? Explain.