1. (40 pts.)
 (a) Derive the Archimedean law from the Dedekind axiom for the real numbers, i.e. use the fact that any subset of \(\mathbb{R} \) which is bounded above has a supremum to show that for any \(a, b \in \mathbb{R}, a, b > 0 \exists n \in \mathbb{N} \) such that \(na > b \).
 (Hint: Consider the set of all \(na \))
 (b) Suppose \((X, d)\) is a metric space. Let \(D \subseteq X \). Prove that \(D \) is dense in \(X \), i.e. \(\overline{D} = X \iff (\forall \text{ open } U \subseteq X) \ D \cap U \neq \emptyset \).
 (c) Show that any compact metric space is separable, i.e. has a countable dense subset.
 (d) Show that \(\mathbb{Q} \) is dense in \(\mathbb{R} \), so \(\mathbb{R} \) is separable.
 (Hint: Use the Archimedean property and part (b))

2. (20 pts.) Let \(\mathcal{L}(E) \) denote the set of all limit points of a set \(E \) and \(\overline{E} \) denote the closure of \(E \). Show that
 (a) \(\mathcal{L}(\mathcal{L}(E)) \subseteq \mathcal{L}(E) \).
 (b) \(\mathcal{L}(E) = \mathcal{L}(\overline{E}) \).

3. (20 pts.) Suppose \(E \subseteq K \), where \(K \) is compact, and \(\mathcal{L}(E) = \emptyset \). Show that \(E \) is finite.

4. (20 pts.) Find all cluster points for the following sequences:
 (a) \(\left(1 + \frac{2}{3n} \right)^{4n} \)
 (b) \(\left(\cos \left(\frac{n\pi}{4} \right) \right)^{(-1)^n} \)

5. (40 pts.) Determine whether the following series converge.
 (a) \(\sum_{k=1}^{\infty} \frac{3^k + 4^k}{5^k} \)
 (b) \(\sum_{k=1}^{\infty} \frac{k!}{k^k} \)
 (c) \(\sum_{k=1}^{\infty} \frac{(-2)^k k^2}{k!} \)
 (d) \(\sum_{k=1}^{\infty} \frac{\pi}{k} \)

6. (20 pts.) Suppose \(f, g : \mathbb{R} \rightarrow \mathbb{R} \) are continuous functions. Show that the set \(\{x : f(x) = g(x)\} \) is closed in \(\mathbb{R} \).

7. (20 pts.) Suppose \(f : \mathbb{R} \rightarrow \mathbb{R} \) satisfies \(|f(x)| \leq |x| \) for all \(x \). What is \(f(0) \)? Prove that \(f \) is continuous at \(x = 0 \).

8. (20 pts.) Classify all functions \(f : \mathbb{R} \rightarrow \mathbb{R} \) which are continuous and such that \(f(\mathbb{R}) \in \mathbb{Q} \).