Name: __________________________

Please show all work and justify your answers. Supply brief narration with your solutions and draw conclusions.

1. Suppose G is a group such that $\forall a, b, c \in G \ ab = ca \Rightarrow b = c$. Prove that G is abelian.

2. Show that in a finite group the number of all elements of order 3 is even.

3. Let $G = GL(n, Q)$ be the multiplicative group of invertible $n \times n$ matrices with rational coefficients and $H = SL(n, Q) = \{A \in G: \det A = 1\}$. Prove that H is a subgroup of G. Prove or disprove that H is normal in G.

4. Let G and H be as in the preceding problem. Suppose $A, B \in G$ and $\det A = \det B$. Prove that A and B belong to the same left coset of H.

5. Prove that for $n \geq 3$ the symmetric group S_n has trivial center. What is $Z(S_2)$?

6. Let A be the set of all elements of the ring $Z \oplus Z$ whose first coordinate is even. Prove that A is an ideal. Is it maximal? Prove your assertion.

7. Suppose $\varphi: R \rightarrow S$ is a ring homomorphism from a ring with unity R to an integral domain S such that $\varphi(R) \neq \{0\}$. Prove that $\varphi(1) = 1$.

8. Prove that $x^p + x + 1$ and $2x + 1$ determine the same function $Z_p \rightarrow Z_p$.

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>total (80)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>