Name: ________________________________

Please show all work and justify your answers.

1. Suppose G is a multiplicative group, $a \in G$. Prove that $a^n = e \iff |a|$ divides n.

2. Prove that any group with prime order must be cyclic.

3. How many distinct group automorphisms of \mathbb{Z} are there? Explain. What about \mathbb{Z}_p?

 Hint: think about generators and their possible values under an automorphism.

4. Let L be a line in \mathbb{R}^3 through the origin and let $\varphi : \mathbb{R}^3 \to \mathbb{R}^3$ be the orthogonal projection to L. Describe $\ker \varphi$ and its cosets in \mathbb{R}^3 geometrically. Sketch.

5. Suppose H and K are subgroups of a finite group G and one of them is normal in G. Let HK denote the set of all products $\{hk : h \in H, k \in K\}$. Prove that $HK < G$.

 Hint: consider a product $hkh'k$ and observe that kh' belongs to Kh' and kH.

6. Suppose $\varphi : R \to S$ is a homomorphism of rings. Prove that $\ker \varphi$ is an ideal of R. Show by example that $\varphi(R)$ is not necessarily an ideal of S. What hypothesis on φ would ensure that $\varphi(R)$ is an ideal of S? Prove it.

7. Let $R = \mathbb{R}[x]$. Which elements of R are units? Are there nonzero zero divisors in R? Let $A = \{p(x) \in R : p(0) = 0\}$. Prove that A is an ideal of R. Is A a prime ideal? Maximal? Prove your assertions.

8. Prove that any cubic polynomial in $\mathbb{R}[x]$ is reducible. Are there irreducible cubic polynomials in polynomial rings in one variable over other fields? Explain.

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>total (80)</th>
</tr>
</thead>
</table>