1. (20 pts.) Suppose \(f : X \to Y \) is a function, \(A \subseteq X \), and \(B \subseteq Y \).
 (a) Prove that \(X \setminus f^{-1}(B) = f^{-1}(Y \setminus B) \).
 (b) Disprove by counterexample that \(Y \setminus f(A) = f(X \setminus A) \).

2. (20 pts.) Let \(A = \{(x, y) \in \mathbb{R}^2 : x > 1\} \) Define \(f : \mathbb{R}^2 \to \mathbb{R}^2 \) by
 \[
 f(x, y) = \begin{cases}
 (x, y) & \text{if } (x, y) \in A \\
 (0, 0) & \text{if } (x, y) \not\in A
 \end{cases}
 \]
 (a) Sketch \(A \). Prove that \(A \) is open in \(\mathbb{R}^2 \).
 (b) Show that \(f \) is not continuous and illustrate with a sketch.

3. (25 pts.) In each case give an example or state that there can be no such example.
 (a) A collection of open subsets of \(\mathbb{R}^2 \) whose union is not open.
 (b) A collection of open subsets of \(\mathbb{R}^2 \) whose intersection is not open.
 (c) An open cover for a set \(A \) without a finite subcover, where
 (i) \(A = \{u \in \mathbb{R}^2 : 0 < |u| \leq 1\} \)
 (ii) \(A = \{u \in \mathbb{R}^2 : |u| \leq 1\} \)
 (iii) \(A = \{u \in \mathbb{R}^2 : |u| < 1\} \)

4. (20 pts.) True/false — circle your choice. Justification is not required.
 Throughout this problem \(f \) is a continuous function.
 T F (a) \(f(A) \subseteq B \Leftrightarrow A \subseteq f^{-1}(B) \).
 T F (b) If \(X \) is compact, then \(f(X) \) is compact.
 T F (c) If \(f : \mathbb{R} \to \mathbb{R} \), then there exists \(x \in \mathbb{R} \) such that \(f(x) = 0 \).
 T F (d) A subset \(A \) of \(\mathbb{R}^2 \) is compact \(\Leftrightarrow \) \(A \) is closed and bounded.
 T F (e) A subset \(A \) of \(\mathbb{R}^2 \) is closed \(\Leftrightarrow \) \(A \) is not open.

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>total (85)</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>