1. (30 pts.) Suppose z_1, z_2, z_3 belong to the unit circle and $z_1 + z_2 + z_3 = 0$. Prove that the triangle with vertices z_1, z_2, z_3 is equilateral.

2. (20 pts.) Suppose $f(z)$ is entire. Prove that so is $\overline{f(z)}$.

3. (30 pts.) Consider the map $f(z) = \frac{1}{z}$. Determine (with proof) the images of the lines $\text{Re } z = 0$ and $\text{Re } z = 1$. Sketch.

4. (40 pts.) Consider the power series
 \[\sum_{n=1}^{\infty} \frac{z^n}{n^2}. \]
 (a) Find the radius of convergence.
 (b) Prove that convergence is uniform within the radius of convergence.

5. (40 pts.)
 (a) Find a parametrization for the straight line segment from 0 to $2 + i$.
 (b) Integrate $\text{Im } z$ along this segment.

6. (40 pts.) Calculate the following curve integrals:
 (a) $\int_{\gamma} \frac{dz}{(z^2 - 1)^3}$, where γ is circle of radius 5 centered at 0.
 (b) $\int_{\gamma} \frac{\sin z dz}{z^4}$, where γ is: \[Y \] \[X \]