1. Suppose \(f(z) \) is entire. Prove that \(\overline{f(\overline{z})} \) is entire.

2. Find an analytic function \(f(z) = f(x + iy) \) such that \(u(x, y) = \text{Re} f(z) = xy \). Express \(f \) as a function of \(z \).

3. Consider the map \(f(z) = 1/z \). Determine the image of the line \(\text{Im} \, z = 1 \). Sketch. Explain.

4. Consider the power series
\[
\sum_{n=1}^{\infty} z^n.
\]
(a) Find the radius of convergence.
(b) Prove that convergence is uniform in any disk centered at the origin with radius smaller than the radius of convergence.

5. (a) Find a parametrization for the straight line segment from 0 to \(5 - 2i \).
(b) Integrate \(\text{Im} \, z \) along this segment.

6. Calculate the following curve integrals:
(a) \(\int_{\gamma} \frac{dz}{z^2 + 4} \), where \(\gamma \) is circle of radius 5 centered at 0.

(b) \(\int_{\gamma} \frac{\cos z \, dz}{z^3} \), where \(\gamma \) is:

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>total (120)</th>
</tr>
</thead>
</table>