1. (10 pts.) Prove the first part of the Weierstrass theorem: Suppose Ω is a domain in the complex plane and \(f_n \) is a sequence in \(H(Ω) \) such that \(f_n \to f \) uniformly on compact subsets of Ω. Prove that \(f \in H(Ω) \).

2. (10 pts.) Find the first three nontrivial terms of the Laurent series at the origin of
(a) \(f(z) = e^z \sin(3z^2) \)
(b) \(f(z) = 1/\sin(z) \)

3. (10 pts.) Prove that a nonconstant entire function must have a dense image.

4. (10 pts.) Let \(\mathbb{C}^* = \mathbb{C} \setminus \{0\} \). For each of the following covering maps \(p \), how many elements are there in each stalk \(p^{-1}(x) \)? Compute and sketch \(p^{-1}(i) \). Illustrate that \(p \) is indeed a covering map by sketching an evenly covered neighborhood of \(i \) and its preimage under \(p \).
(a) \(p(z) = z^2 : \mathbb{C}^* \to \mathbb{C}^* \)
(b) \(p(z) = e^z : \mathbb{C} \to \mathbb{C}^* \)