1. (20 pts.) Suppose R and S are rings and $f : R \to S$ is a ring homomorphism.
 (a) Show that $\ker f = \{ r \in R : f(r) = 0 \}$ is a two-sided ideal of R.
 (b) Show that if f is onto and I is a left ideal of R,
 then $f(I) = \{ s \in S : \exists r \in R \ f(r) = s \}$ is a left ideal of S.

2. (50 pts.) Suppose R is a commutative ring with 1. For each of the following subsets of R prove or disprove that it is closed under multiplication:
 (a) The set of units of R.
 (b) The set of nonunits of R.
 (c) The set of nonzero elements of R.
 (d) A prime ideal.
 (e) The complement of a prime ideal.

3. (60 pts.) Let R be the ring of all continuous real valued functions of a real variable, i.e. $R = \{ f : \mathbb{R} \to \mathbb{R} : f$ is continuous $\}$, where addition and multiplication of functions are pointwise, i.e. $(f + g)(x) = f(x) + g(x)$ and $(f \cdot g)(x) = f(x) \cdot g(x)$.
 Given a subset of the real line $V \subseteq \mathbb{R}$ define $I(V)$ to be the set of all continuous functions that vanish on V, i.e. $I(V) = \{ f \in R : \forall x \in V \ f(x) = 0 \}$.
 (a) Which functions are the units of R?
 (b) Prove or disprove: R is an integral domain.
 (c) Show that if $V \subseteq \mathbb{R}$, then $I(V)$ is an ideal of R.
 (d) What are $I(\emptyset)$ and $I(\mathbb{R})$?
 (e) Show that if $a \in \mathbb{R}$, then $I(\{a\})$ is a prime ideal of R.
 (f) Show that if $a, b \in \mathbb{R}$ and $a \neq b$, then $I(\{a, b\})$ is not a prime ideal of R.

4. (40 pts.) True/false questions. Justification (proof or counterexample) required.
 T F (a) Every finite integral domain is a field.
 T F (b) If R is an integral domain and $S = R \setminus \{0\}$, then $S^{-1}R$ is a field.
 T F (c) Every ideal of \mathbb{Z} is a principal ideal.
 T F (d) Every ideal of the polynomial ring $\mathbb{Z}[x]$ is a principal ideal.