1. Let \(f(t) = t^4 - 2t^2 \). Find all the critical points of \(f \) on the interval \(-2 \leq x \leq 2\). Use the second derivative to determine concavity at the critical points. Find the global minimum and the global maximum of \(f \) on the interval. Where do they occur?

\[
\begin{align*}
\text{\texttt{> f:=t^4-2*t^2;}} & \\
\text{\texttt{> df:=diff(f,t); factor(\%);}} & \quad f'=4t^3-4t \\
\text{\texttt{> cp:=solve(df);}} & \quad df=12t^2-4 \\
\text{\texttt{> ddf:=diff(df,t);}} & \quad cp:=0,1,-1 \\
\text{\texttt{> [cp]:map(xx->subs(t=xx,ddf),\%);}} & \quad ddf=12t^2-4 \\
\text{\texttt{> [cp,-2,2]: map(xx->subs(t=xx,f),\%);}} & \quad [0,1,-1] \\
\text{\texttt{> plot(f,t=-2..2);}} & \quad [-4,8] \\
\end{align*}
\]

2. Find indefinite integrals of the following functions

(a) \(e^{2t}(1+e^{2t})^5 \)
(b) \(t \cos(2t) \)

\[
\begin{align*}
\text{\texttt{> exp(2*t)*(1+exp(2*t))^5; int(\%);}} & \quad \int e^{2t}(1+e^{2t})^5 \, dt = \frac{1}{12}(1+e^{2t})^6 + C \\
\text{\texttt{> t*cos(2*t); int(\%);}} & \quad \int t \cos(2t) \, dt = \frac{1}{4}t \cos(2t) + \frac{1}{2} \sin(2t) + C \quad \text{Let } u = e^{2t}, \quad du = 2e^{2t} \, dt \\
\end{align*}
\]
3. Show that the improper integral \(\int_1^\infty \frac{1}{\sqrt{x^2 + x^2}} \, dx \) converges and find an upper bound.

\[
\sqrt{x} > 0 \ , \ \sqrt{x^2 + x^2} > x^2 \ , \ \frac{1}{\sqrt{x^2 + x^2}} < \frac{1}{x^2} \\
\int_1^\infty \frac{1}{\sqrt{x^2 + x^2}} \, dx \leq \int_1^\infty \frac{1}{x^2} \, dx = \int_1^\infty x^{-2} \, dx = \left[-x^{-1} \right]_1^\infty = -1 + 1 = 0 + 1 = 1
\]

4. For the autonomous differential equation \(\frac{dx}{dt} = x - ax^2 \), where \(a \) is a positive constant, draw the phase-line diagram, find the equilibria, and determine their stability.

\[
\frac{dx}{dt} = x - ax^2 = x(1-ax) = 0 \quad \text{when} \quad x = 0 \quad \text{or} \quad x = \frac{1}{a} \quad \Rightarrow \quad \text{equilibria}
\]

\[
\begin{align*}
\frac{dx}{dt} & = x - ax^2 \\
\frac{dx}{dt} & = \frac{dx}{dt} = \sqrt{h(t)} \\
\int h^{-\frac{1}{2}} \, dh = -\frac{t}{2} + C \\
\frac{h^{\frac{1}{2}}}{v^2} = 2h
\end{align*}
\]

5. Solve the Torricelli equation \(\frac{dh}{dt} = -\sqrt{h} \) with initial condition \(h(0) = 1 \). When is \(h = 0 \)?

\[
> \text{eq:=diff}(h(t),t) = -\sqrt{h(t)}; \\
> \text{ic:=h(0)=1;} \\
> \text{dsolve}([\text{eq},\text{ic}],h(t)):\text{allvalues}(); \\
> \text{sol:=subs}(h(t),\text{solve}()); \\
> \text{plot}(\text{sol},t=0..2);
\]