Differentials: Given \(f(r) \) on \(\mathbb{R}^3 \) and a point \(r_0 \), let \(\Delta r = r - r_0 \). The differential \(df \) is the linear function of \(\Delta r \) whose graph is tangent to the graph of \(w = f(r) \) at \(r_0 \). If we choose the coordinate projections as the basis for the vector space of linear maps of \(\Delta r \), then we can expand \(df \) in this basis. We denote the coordinate projections by \(dx, dy, dz \) (e.g. \(dy(\Delta r) = \Delta y \)). The coefficients are called the partial derivatives of \(f \) at \(r_0 \) and we get \(df = f_x dx + f_y dy + f_z dz = D(f) dr \)

Forms: A linear function of \(\Delta r \) that also depends on \(r_0 \) (from now on we will drop the subscript) is called a 1-form. Thus, \(df \) is a 1-form. Higher degree forms are multilinear alternating functions. An \(n \)-form is a function of \(n \)-variables, linear in each variable, such that interchanging variables produces a minus sign (in general, a permutation of the variables gives its parity). For example, \(\Delta r_1, \Delta r_2 \mapsto \Delta y_1 \Delta z_2 - \Delta y_2 \Delta z_1 = \det \left(\begin{array}{cc} \Delta y_1 & \Delta y_2 \\ \Delta z_1 & \Delta z_2 \end{array} \right) \) is a 2-form denoted by \(dy dz \).

The vector space of all \(n \)-forms is denoted \(\Lambda^n \). The table below shows cartesian expansions of \(n \)-forms on \(\mathbb{R}^3 \):

<table>
<thead>
<tr>
<th>degree</th>
<th>name</th>
<th>cartesian coordinate form</th>
<th>dim (\Lambda^n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-form</td>
<td>function</td>
<td>(f = f(x, y, z))</td>
<td>0</td>
</tr>
<tr>
<td>1-form</td>
<td>work form</td>
<td>(\omega = A(x, y, z) dx + B(x, y, z) dy + C(x, y, z) dz)</td>
<td>1</td>
</tr>
<tr>
<td>2-form</td>
<td>flux form</td>
<td>(\varphi = P(x, y, z) dy dz + Q(x, y, z) dz dx + R(x, y, z) dx dy)</td>
<td>2</td>
</tr>
<tr>
<td>3-form</td>
<td>density form</td>
<td>(\rho = f(x, y, z) dx dy dz)</td>
<td>3</td>
</tr>
</tbody>
</table>

Products: In the above example \(dy dz = -dz dy \). Also \(dx dx = 0 \). These are general principles which we can apply to multiplication of forms. Famous vector products are special cases of this multiplication.

<table>
<thead>
<tr>
<th>product of forms</th>
<th>vector interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>(uv) = ((u_x dx + u_y dy + u_z dz) (v_x dx dy dz + v_y dy dz + v_z dz dx))</td>
<td>dot product</td>
</tr>
<tr>
<td>(uv) = ((u_x dx + u_y dy + u_z dz) (v_x dx dy dz + v_y dy dz + v_z dz dx))</td>
<td>cross product</td>
</tr>
<tr>
<td>(uvw) = (\det \left(\begin{array}{ccc} u_x & u_y & u_z \ v_x & v_y & v_z \ w_x & w_y & w_z \end{array} \right) dx dy dz)</td>
<td>triple product</td>
</tr>
</tbody>
</table>

Differentials of \(n \)-forms: We extend the definition of \(d \) from 0-forms to \(n \)-forms by imposing the rules of differentiation

\[
\begin{align*}
\text{linearity} & : d(\omega + \eta) = d\omega + d\eta \\
\text{product rule} & : d(\omega \eta) = d\omega \eta + (-1)^{\deg \omega} \omega d\eta
\end{align*}
\]

The tables below show \(d \) of various forms; the corresponding vector differential operators, where we use the del operator \(\nabla = \left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z} \right) \) and the usual vector products, except that the partials are applied; and some of the vector versions of the rules.

<table>
<thead>
<tr>
<th>differential</th>
<th>vector interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>(df = df_1 dx + df_2 dy + df_3 dz)</td>
<td>grad (f = D(f) = \nabla f = \left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z} \right))</td>
</tr>
</tbody>
</table>
| \(d\omega = d(Adx + Bdy + Cdz) = \left(\frac{\partial C}{\partial y} - \frac{\partial B}{\partial z} \right) dy dz + \left(\frac{\partial B}{\partial x} - \frac{\partial A}{\partial y} \right) dz dx + \left(\frac{\partial A}{\partial z} - \frac{\partial C}{\partial x} \right) dx dy \) | curl \(\Psi = \text{rot} \Psi = \nabla \times \Psi \\
= \left(\frac{\partial \Psi_z}{\partial y} - \frac{\partial \Psi_y}{\partial z}, \frac{\partial \Psi_x}{\partial z} - \frac{\partial \Psi_z}{\partial x}, \frac{\partial \Psi_y}{\partial x} - \frac{\partial \Psi_x}{\partial y} \right) \) |
| \(d\varphi = d(Pdy + Qdz + Rdx dy) \) | div \(\Phi = \nabla \cdot \Phi = \frac{\partial \Phi_x}{\partial x} + \frac{\partial \Phi_y}{\partial y} + \frac{\partial \Phi_z}{\partial z} \) |

\[
\begin{align*}
\nabla(f + g) &= \nabla f + \nabla g \\
\nabla \times (\Psi_1 + \Psi_2) &= \nabla \times \Psi_1 + \nabla \times \Psi_2 \\
\nabla \cdot (\Phi_1 + \Phi_2) &= \nabla \cdot \Phi_1 + \nabla \cdot \Phi_2
\end{align*}
\]

\[
\begin{align*}
\nabla(f g) &= (\nabla f) g + f(\nabla g) \\
\nabla \times (f \Psi) &= (\nabla f) \times \Psi + f(\nabla \times \Psi) \\
\nabla \cdot (f \Psi) &= \nabla \cdot (f) \times \Psi + f(\nabla \times \Psi) \\
\n\nabla \cdot (f \Phi) &= (\nabla f) \cdot \Phi + f(\nabla \cdot \Phi)
\end{align*}
\]

Poincaré’s lemma: ¹ For contractible ² domains we have a converse to \(d(d(\omega)) = 0 \), namely if \(d\varphi = 0 \), then there is \(\omega \) such that \(d\omega = \varphi \). Famous special cases of this say that an irrotational (conservative) vector field has a potential and a divergence-free vector field has a vector potential.

¹Due to Vito Volterra (1860–1940).
²A space is contractible means the identity map on this space is homotopic to the constant map. Roughly speaking this means that the space is continuously deformable to a point. Since various “holes” in space obstruct such a deformation, a contractible space can be thought of as lacking holes. A star-shaped domain is contractible.
Integration in \mathbb{R}^3

©1996 D. Gokhman

Curves: A curve is parametrized by a continuous function of one parameter $r: [a, b] \to \mathbb{R}^n$

$$dr = \begin{pmatrix} dx \\ dy \\ dz \end{pmatrix} = D(r) dt = r' dt$$ is tangent to the curve at r:

Unit length: $|dr| = \sqrt{dx^2 + dy^2 + dz^2}$

Integration of a vector field (a work form) along a curve: $\int F \cdot dr = \int F_x \, dx + F_y \, dy + F_z \, dz$

Integration of a scalar field along a curve: $\int f \, |dr|$, Special case: arc length $\int |dr|$

Surfaces: A surface is parametrized by a continuous function Φ of two parameters u, v.

$$dS = \begin{pmatrix} dy \, dz \\ dz \, dx \\ dx \, dy \end{pmatrix} = \left(\det \left(D(y, z) \right) \right) \frac{\partial \Phi}{\partial u} \times \frac{\partial \Phi}{\partial v} \, du \, dv$$ is \perp to the surface:

Unit area: $|dS|$

Integration of a vector field (a flux form) through a surface: $\int F \cdot dS = \int (F_x) \, dy \, dz + (F_y) \, dz \, dx + (F_z) \, dx \, dy$

Integration of a scalar field on a surface: $\int f \, |dS|$, Special case: surface area $\int |dS|$

Solids: A solid is parametrized by a continuous function Ψ of three parameters u, v, w.

$$dV = \det (D(\Psi)) \, du \, dv \, dw = \left(\frac{\partial \Psi}{\partial u} \times \frac{\partial \Psi}{\partial v} \times \frac{\partial \Psi}{\partial w} \right) \, du \, dv \, dw$$

Unit volume: $|dV|$

Integration of a scalar field (a density form) over a volume: $\int f \, dV = \int f \, dx \, dy \, dz$

Fundamental Theorem of Calculus:

If ω is a smooth n-form on an n-dimensional domain Ω with smooth boundary $\partial \Omega$, then $\int_{\partial \Omega} \omega = \int_{\Omega} d\omega$

Famous special cases:

Barrow’s rule 3 (incl. F.T.C. for \mathbb{R}): $\int \nabla f \cdot dr = f(b) - f(a)$

Stokes’ theorem 4 (incl. Green’s theorem in the plane): $\int_D (\nabla \times F) \cdot dS = \int_{\partial D} F \cdot dr$

Gauss-Ostrogradski divergence theorem: $\int_B \int_B (\nabla \cdot F) \, dV = \int_{\partial B} F \cdot dS$

3Isaac Barrow (1630–1677) was the first to recognize that integration and differentiation were inverse operations. In 1669 Barrow resigned as Lucasian professor of mathematics at Cambridge in favour of his pupil Newton.

4This theorem first appeared in a letter of July 2, 1850 from William Thomson (1824–1907) (Baron Kelvin of Largs, 1892) to George Gabriel Stokes (1819–1903), Lucasian Professor of Mathematics at Cambridge (1849), who included it in his next exam.