Energy, entropy and uniqueness

Wave equation in one spatial dimension: \(u_{tt} = c^2 u_{xx} \)

Boundary conditions: \(u(0, t) = u(L, t) = 0 \)

Initial conditions: \(u(x, 0) = f(x), \ u_t(x, 0) = g(x) \)

Solution by separation of variables and Fourier series: \(u(x, t) = \sum_{n=1}^{\infty} B_n \sin \left(\frac{n \pi}{L} x \right) \left[B_n \cos \left(\frac{cn \pi}{L} t \right) + D_n \sin \left(\frac{cn \pi}{L} t \right) \right] \)

where \(B_n = \frac{2}{L} \int_0^L f(x) \sin \left(\frac{n \pi}{L} x \right) \, dx \) and \(D_n = \frac{2}{cn \pi} \int_0^L g(x) \sin \left(\frac{n \pi}{L} x \right) \, dx \)

Energy density: \(\varepsilon(x, t) = \frac{1}{2} (c^2 u^2_x + u^2) \)

You can think of the first term as kinetic energy density and the second as potential energy density.

Total energy: \(E(t) = \int_0^L \varepsilon(x, t) \, dx \)

Heat equation in three spatial dimensions: \(u_{tt} = c^2 \nabla^2 u \)

By Duhamel’s principle, the total heat in a small volume \(\Omega \) is \(Q \approx M u \, \text{vol}(\Omega) \), where \(M \) is specific heat of matter.

By Newton’s law of cooling, heat flux across the boundary \(\partial \Omega \) is proportional to temperature gradient: \(Q_t = N \int_{\partial\Omega} \nabla u \cdot \hat{n} \, dS \)

By the Gauss-Ostrogradski divergence theorem \(Q_t = N \int_{\Omega} \nabla \cdot \nabla u \, dV \approx N \nabla^2 u \, \text{vol}(\Omega) \)

Dividing \(M u \, \text{vol}(\Omega) \approx N \nabla^2 u \, \text{vol}(\Omega) \) by the volume and taking limit as \(\text{vol}(\Omega) \to 0 \) we obtain \(u_t = \frac{N}{M} \nabla^2 u \)

Entropy: Define entropy density \(\varepsilon = \frac{1}{2} u^2 \) and integrate over \(\Omega \): \(E(t) = \int_\Omega \varepsilon \, dV = \frac{1}{2} \int_\Omega u^2 \, dV \)

Entropy principle: In the presence of temperature gradients, total entropy of an insulated body decreases.

Product rule for divergence: \(\nabla \cdot (\varphi \Phi) = \nabla \varphi \cdot \Phi + \varphi (\nabla \cdot \Phi) \) implies \(\nabla \cdot (u \nabla u) = \nabla u \cdot \nabla u + u (\nabla^2 u) \).

Thus, \(\varepsilon_t = u_t u + c^2 \nabla^2 u = c^2 [\nabla \cdot (u \nabla u) - (\nabla u) \cdot (\nabla u)] \).

Integrating and applying the divergence theorem we obtain \(E_t = c^2 \left[\int_{\partial\Omega} u \nabla u \cdot \hat{n} \, dS - \int_{\Omega} (\nabla u) \cdot (\nabla u) \, dV \right] \).

For an insulated body \(\nabla u \cdot \hat{n} = 0 \) on the boundary \(\partial \Omega \), so \(E_t = -c^2 \int_{\Omega} (\nabla u) \cdot (\nabla u) \, dV \leq 0 \).

Uniqueness: Given two solutions with the same initial state, their difference \(u \) is a solution with initial state 0. Its initial entropy is 0. Since \(E \geq 0 \) and cannot increase (\(E_t \leq 0 \)), it stays 0.

Therefore, at any time, \(\nabla u = 0 \), so \(u \) is a constant and thus \(u = 0 \).