1. Show that
\[\int_0^{2\pi} e^{it} dt = 2\pi \quad \text{and} \quad \int_{-\pi}^{\pi} e^{\cos t} \cos(sint) dt = 2\pi. \]

2. Let \(a \) be a real number with \(a > 1 \) and \(n \) is an integer. Using the mean value theorem for \(f(z) = 1/(z^n + a) \) to show that
\[\int_{-\pi}^{\pi} \frac{a + \cos(na)}{a^2 + 1 + 2a \cos(nt)} dt = \frac{2\pi}{a}. \]

3. Let \(f \) be a nonconstant analytic function in a bounded domain \(\Omega \). Assume that \(f \) is continuous and nonzero on the closure of \(\Omega \). Show that minimum value of \(|f(z)| \) can only achieved on the boundary of \(\Omega \).

4. The Wallis formula for even integers.
 a) Using the binomial theorem to verify that
 \[z^{-1} \left(z + \frac{1}{z} \right)^{2n} = \sum_{k=0}^{2n} \frac{(2n)!}{(2n-k)!k!} z^{2n-2k-1}. \]
 b) Using Cauchy’s theorem to show that
 \[\int_{|z|=1} z^{-1} \left(z + \frac{1}{z} \right)^{2n} dz = \frac{2\pi i (2n)!}{(n!)^2}. \]
 c) Conclude that
 \[\int_0^{2\pi} \cos^{2n}(t) dt = 2\pi \frac{(2n)!}{2^{2n}(n!)^2}. \]

More later!