Nonhomogeneous ODEs-Undetermined Coefficient Method

Recall that the general solution of a nonhomogeneous ODE is given by

\[y = y_c + y_p \]

where \(y_c \) is the **complimentary solution** (the general solution of the corresponding homogeneous ODE) and \(y_p \) is a **particular solution** (of the nonhomogeneous equation).

In this worksheet, we will use the **method of undetermined coefficients** to find \(y_p \).

> restart:

Example 1

Consider the following 2nd order ODE

\[ode := 2 \frac{d^2}{dt^2} y(t) - 3 \frac{d}{dt} y(t) - 5 y(t) = e^{2t} \] \hspace{1cm} (1.1)

The corresponding homogeneous equation is (setting the right hand side to zero)

\[hom_ode := 2 \frac{d^2}{dt^2} y(t) - 3 \frac{d}{dt} y(t) - 5 y(t) = 0 \] \hspace{1cm} (1.2)

whose characteristic equation is

\[odechar := 2X^2 - 3X - 5 = 0 \] \hspace{1cm} (1.3)

The roots of this equation are the characteristic values

\[\text{solve}(odechar, X); \quad \frac{5}{2}, -1 \] \hspace{1cm} (1.4)

The roots are real and distinct. We then have the general solution of the homogeneous equation be given by

\[y_c := t \rightarrow C[1] e^{-t} + C[2] e^{5/2t} \] \hspace{1cm} (1.5)

2 is not a characteristic value so that we will seek for a particular solution \(y_p \) of the form (A is a constant needs to be determined)

\[y_p := t \rightarrow A e^{2t} \] \hspace{1cm} (1.6)

Substitute this into the original equation

\[\text{subs}(y(t)=y_p(t), ode); \] \hspace{1cm} (1.7)
\[2 \left(\frac{\partial^2}{\partial r^2} (A e^{2r}) \right) - 3 \left(\frac{\partial}{\partial r} (A e^{2r}) \right) - 5 A e^{2r} = e^{2r} \]

(1.7)

Simplify the result

\[> \text{simplify}(\%); \quad -3 A e^{2r} = e^{2r} \]

(1.8)

From this, we solve for A

\[> A := \text{solve}(\%, A); \quad A := -\frac{1}{3} \]

(1.9)

\[> y_p(t); \quad -\frac{1}{3} e^{2t} \]

(1.10)

Thus the general solution is given by

\[> y_g := t \rightarrow y_c(t) + y_p(t); \quad y_g(t) := t \rightarrow y_c(t) + y_p(t) \]

(1.11)

\[> y_g(t); \quad C_1 e^{-t} + C_2 e^{\frac{5}{2}t} - \frac{1}{3} e^{2t} \]

(1.12)

\[\textbf{Example 2} \]

Consider the following 2nd order ODE

\[> \text{restart}; \]

(2.1)

\[> \text{ode} := \text{diff}(y(t), t$2) - 3*\text{diff}(y(t), t) = (t^2+t) \cdot \exp(t); \quad ode := \frac{d^2}{dt^2} y(t) - 3 \left(\frac{d}{dt} y(t) \right) = (t^2 + t) e^{t} \]

The corresponding homogeneous equation is (setting the right hand side to zero)

\[> \text{hom_ode} := \text{diff}(y(t), t$2) - 3*\text{diff}(y(t), t) = 0; \quad \text{hom}_ode := \frac{d^2}{dt^2} y(t) - 3 \left(\frac{d}{dt} y(t) \right) = 0 \]

(2.2)

whose characteristic equation is

\[> \text{odechar} := X^2 - 3X = 0; \quad odechar := X^2 - 3X = 0 \]

(2.3)

The roots of this equation are the characteristic values

\[> \text{solve}(\text{odechar}, X); \quad 0, 3 \]

(2.4)

The roots are real and distinct. We then have the general solution of the homogeneous equation be given by

\[> y_c := t \rightarrow C[1] + C[2] \cdot \exp(3t); \]

(2.5)
\[y_c := t \to C_1 + C_2 e^{3t} \]

(2.5)

1 is not a characteristic value so that we will seek for a particular solution \(y_p \) of the form (\(A, B, C \) are constants need to be determined)
\[y_p := t \to (A r^2 + B t + C) e^t \]

(2.6)

Substitute this into the original equation
\[\frac{\partial^2}{\partial t^2} ((A r^2 + B t + C) e^t) - 3 \left(\frac{\partial}{\partial t} ((A r^2 + B t + C) e^t) \right) = (r^2 + t) e^t \]

(2.7)

Simplify the result
\[2A - 2At - B - 2Ar^2 - 2Bt - 2C = r^2 + t \]

(2.8)

Comparing the coefficients of powers of \(t \) on both sides we have the following system
\[\text{sys} := \{-2A = 1, -2B - 2A = 1, 2A - 2C - B = 0\}; \]

(2.10)

From this, we solve for \(A, B, C \)
\[\text{Const} := \text{solve(\text{sys}, \{A, B, C\})}; \]

(2.11)

Thus the general solution is given by
\[y_c(t) + Y_p; \]

(2.13)

\[C_1 + C_2 e^{3t} + \left(-\frac{1}{2} r^2 - \frac{1}{2}\right) e^t \]

Example 3

Consider the following 2nd order ODE
\[\text{ode} := \frac{d^2}{dt^2} y(t) - 2y(t) = (2t+1) * \exp(-t); \]

(3.1)

The corresponding homogeneous equation is (setting the right hand side to zero)
\[\text{hom_ode} := \frac{d^2}{dt^2} y(t) - 2y(t) = 0; \]

(3.2)
\[\text{hom}_\text{ode} := \frac{d^2}{dt^2} y(t) - \left(\frac{d}{dt} y(t) \right) - 2 y(t) = 0 \]

whose characteristic equation is

\[\text{odechar} := X^2 - X - 2 = 0 \]

The roots of this equation are the characteristic values

\[\text{solve(odechar, X)}; \]

\[2, -1 \]

The roots are real and distinct. We then have the general solution of the homogeneous equation be given by

\[y_c := t \rightarrow C[1] e^{-t} + C[2] e^{2t} \]

-1 is a characteristic value (of multiplicity 1) so that we will seek for a particular solution \(y_p \) of the form (A, B are constants need to be determined). Notice the factor \(t \) in the front.

\[y_p := t \rightarrow t (A t + B) e^{-t} \]

Substitute this into the original equation

\[\text{subs}(y(t)=y_p(t), \text{ode}); \]

\[\frac{\partial^2}{\partial t^2} \left(t (A t + B) e^{-t} \right) - \left(\frac{\partial}{\partial t} \left(t (A t + B) e^{-t} \right) \right) - 2 t (A t + B) e^{-t} = (2 t + 1) e^{-t} \]

Simplify the result

\[\text{simplify(\%)/exp(-t)}; \]

\[2 A - 6 A t - 3 B = 2 t + 1 \]

\[\text{collect(\%,t)}; \]

\[2 A - 6 A t - 3 B = 2 t + 1 \]

Comparing the coefficients of powers of \(t \) on both sides we have the following system

\[\text{sys} := \{-6 A = 2, 2 A - 3 B = 1\}; \]

\[\text{sys} := \{-6 A = 2, 2 A - 3 B = 1\} \]

From this, we solve for A

\[\text{Const} := \text{solve(sys, \{A, B\})}; \]

\[\text{Const} := \left\{ A = -\frac{1}{3}, B = -\frac{5}{9} \right\} \]

\[\text{Y_p} := \text{subs(C, y_p(t))}; \]

\[Y_p := t \left(-\frac{1}{3} t - \frac{5}{9} \right) e^{-t} \]

Thus the general solution is given by

\[\text{y_g} := t \rightarrow y_c(t) + Y_p; \]

\[y_g := t \rightarrow y_c(t) + Y_p \]
Example 4

Consider the following 2nd order ODE

\[\text{ode} := \frac{d^2}{dt^2} y(t) - 4 \left(\frac{d}{dt} y(t) \right) + 4 y(t) = (t^2 + t + 3) e^{2t}\]

(4.1)

The corresponding homogeneous equation is (setting the right hand side to zero)

\[\text{hom_ode} := \frac{d^2}{dt^2} y(t) - 4 \left(\frac{d}{dt} y(t) \right) + 4 y(t) = 0\]

(4.2)

whose characteristic equation is

\[\text{odechar} := X^2 - 4X + 4 = 0\]

(4.3)

The roots of this equation are the characteristic values

\[\text{solve(odechar, X)};\]

\[2, 2\]

(4.4)

The roots are real and double. We then have the general solution of the homogeneous equation be given by

\[y_c := t \rightarrow C[1] e^{2t} + C[2] t e^{2t}\]

(4.5)

2 is a characteristic value (of multiplicity 2) so that we will seek for a particular solution \(y_p\) of the form \((A, B)\) are constants need to be determined). Notice the factor \(t^2\) in the front.

\[y_p := t \rightarrow t^2 (A t^2 + B t + C) e^{2t}\]

(4.6)

Substitute this into the original equation

\[\frac{\partial^2}{\partial t^2} \left(t^2 (A t^2 + B t + C) e^{2t} \right) - 4 \left(\frac{\partial}{\partial t} \left(t^2 (A t^2 + B t + C) e^{2t} \right) \right) + 4 t^2 (A t^2 + B t + C) e^{2t} = (t^2 + t + 3) e^{2t}\]

(4.7)

Simplify the result

\[\text{simplify(\%/exp(2*t))};\]

\[12 A t^2 + 6 B t + 2 C = t^2 + t + 3\]

(4.8)
> collect(%1,t);
\[12 A t^2 + 6 B t + 2 C = t^2 + t + 3 \] (4.9)

Comparing the coefficients of powers of \(t \) on both sides we have the following system

> sys:={12*A=1, 6*B=1, 2*C=3};
\[\text{sys} := \{12 A = 1, 6 B = 1, 2 C = 3\} \] (4.10)

From this, we solve for \(A \)

> Const:=solve(sys);
\[\text{Const} := \left\{ C = \frac{3}{2}, B = \frac{1}{6}, A = \frac{1}{12} \right\} \] (4.11)

> Y_p:=subs(Const, y_p(t));
\[Y_p := t^2 \left(\frac{1}{12} t^2 + \frac{1}{6} t + \frac{3}{2} \right) e^{2t} \] (4.12)

Thus the general solution is given by

> y_g:=t->y_c(t)+Y_p;
\[y_g := t \rightarrow y_c(t) + Y_p \] (4.13)

> y_g(t);
\[C_1 e^{2t} + C_2 t e^{2t} + t^2 \left(\frac{1}{12} t^2 + \frac{1}{6} t + \frac{3}{2} \right) e^{2t} \] (4.14)

Checking our solution

> simplify(subs(y(t)=y_g(t), ode));
\[(t^2 + t + 3) e^{2t} = (t^2 + t + 3) e^{2t} \] (4.15)

\section*{Example 5}

Consider the following 2nd order ODE

> restart:
\[\text{ode} := \frac{d^2}{dt^2} y(t) - 2 \left(\frac{d}{dt} y(t) \right) + 2 y(t) = t \cos(2 t) \] (5.1)

The corresponding homogeneous equation is (setting the right hand side to zero)

> hom_ode:=diff(y(t), t$2) - 2*diff(y(t),t)+2*y(t)=0;
\[\text{hom_ode} := \frac{d^2}{dt^2} y(t) - 2 \left(\frac{d}{dt} y(t) \right) + 2 y(t) = 0 \] (5.2)

whose characteristic equation is

> odechar:=X^2-2*X+2=0;
\[\text{odechar} := X^2 - 2 X + 2 = 0 \] (5.3)

The roots of this equation are the characteristic values

> solve(odechar, X);
\[1 + i, 1 - i \] (5.4)
The roots are conjugate complex. We then have the general solution of the homogeneous equation be given by

\[y_c(t) = a_1 e^{t} \cos(t) + a_2 e^{t} \sin(t) \tag{5.5} \]

From the right hand side we see that \(\cos(2t) \) comes from \(e^{(0+2i)t} \) and 0 + 2 \(i \) is NOT a characteristic value so that we will seek for a particular solution \(y_p \) of the form (A,B,C,E are constants need to be determined). Notice the presence of \(\sin(2t) \) in the formula. We have to avoid the use of \(D \) since it is used for differential operator in Maple.

\[y_p(t) = (A t + B) \cos(2t) + (C t + E) \sin(2t) \tag{5.6} \]

Substitute this into the original equation

\[\frac{d^2}{dt^2} \left((A t + B) \cos(2t) + (C t + E) \sin(2t) \right) - 2 \left(\frac{d}{dt} \left((A t + B) \cos(2t) + (C t + E) \sin(2t) \right) \right) + 2 (A t + B) \cos(2t) + 2 (C t + E) \sin(2t) = t \cos(2t) \tag{5.7} \]

Simplify the result

\[\text{simplify}(%); \]

\[-4 A \sin(2t) - 2 \cos(2t) A t - 2 \cos(2t) B + 4 C \cos(2t) - 2 \sin(2t) C t - 2 \sin(2t) E A t - 2 \cos(2t) + 4 \sin(2t) A t + 4 \sin(2t) B - 2 C \sin(2t) - 4 \cos(2t) C t - 4 \cos(2t) E = t \cos(2t) \tag{5.8} \]

Comparing the coefficients of powers of \(\cos(2t) \), \(\sin(2t) \) and \(t \) on both sides we have the following system

\[\text{sys:} = \{-2 A - 4 C = 1, -2 B - 2 A + 4 C - 4 E = 0, -2 C + 4 A = 0, -4 A - 2 E + 4 B = 0 \}; \]

\[\text{sys:} = \{ -2 A - 4 C = 1, -4 E - 2 B + 4 C - 2 A = 0, -2 C + 4 A = 0, -4 A - 2 E + 4 B = 0 \} \tag{5.10} \]

From this, we solve for A

\[\text{Const:=solve(sys)}; \]

\[\text{Const := \{B = -\frac{11}{50}, E = -\frac{1}{25}, A = -\frac{1}{10}, C = -\frac{1}{5} \}} \tag{5.11} \]

\[\text{Y_p:=subs(Const, y_p(t))}; \]

\[Y_p := \left(-\frac{1}{10} t - \frac{11}{50} \right) \cos(2t) + \left(-\frac{1}{5} t - \frac{1}{25} \right) \sin(2t) \tag{5.12} \]

Thus the general solution is given by

\[y_g(t) = y_c(t) + Y_p; \tag{5.13} \]
\[y_g := t \to y_c(t) + Y_p \] (5.13)

\[y_g(t) := a_1 e^t \cos(t) + a_2 e^t \sin(t) + \left(-\frac{1}{10} t - \frac{11}{50} \right) \cos(2t) + \left(-\frac{1}{5} t - \frac{1}{25} \right) \sin(2t) \] (5.14)