Complex II Jan 30

Power Series - absolute convergence, uniform convergence

Thus $\sum A_p z_p (z-w)^p$ converges absolutely about w

$z \neq w$ S converges at z.

$D \times |x-w| < |z-w|$.

S converges absolutely on D and uniformly on each closed subset of D.

Proof (Continued)

$z \in D$

$0 < \delta < |z-w| - |x-w|$

$\alpha = \frac{|x-w| + \delta}{|z-w|} < 1$
\[m: \text{pos. int.} \quad n \quad \left| \sum_{m+1}^{\infty} A_p \cdot (z-w)^p \right| < \frac{\varepsilon}{2} (1-x) \]

Because \(S \) converges at \(x \)

\[q: \text{any pos. int.} \quad \left| A_{m+1} \cdot \left(z-w \right)^{m+1} \right| < \frac{\varepsilon}{2} (1-x) \]

\(t \) be a point \(|x-t| < \delta \)

\[n: \text{pos. int.} \quad |x-t| + |w-x| < |x-w| + \delta \]

\[\sum_{m+1}^{\infty} |A_p| \cdot |z-w|^p < \]

\[\sum_{m+1}^{\infty} |A_p| \cdot (|x-w| + \delta)^p \]

\[= \sum_{m+1}^{\infty} |A_p| \cdot |z-w|^p \cdot \left(\frac{|x-w| + \delta}{|z-w|} \right)^p \]

\[< \varepsilon \cdot (1-x) \sum_{m+1}^{\infty} \alpha^p < \varepsilon \]

\[\sum_{j=0}^{\infty} |x_j|^2 < M \]
\[\lim_{n \to \infty} \sum_{p=0}^{\infty} A_p (s - w)^p \]

One of the following is true:
1) S is totally divergent, i.e., S converges only at w
2) S is totally convergent, i.e., S converges at every point.
3) S has a radius of convergence, i.e., there is \(r > 0 \) such that S converges at each \(z \) such that \(|z - w| < r \) and S does not converge at any \(z \) such that \(|z - w| \geq r \).
r is the radius of convergence.

Proof let \(B \) be the set of points at which \(S \) converges.

1) \(B \) unbounded

\[z \in B \quad |z| > |x-w| + |w| + 1 \]

\[|x-w| < |z| - |w| - 1 < |z-w| \]

2) \(B \) bounded

\[r = \|z-w\| = \sup \{ |z-w| : z \in B \} \]

a) \(r = 0 \quad \exists w \in S \)

b) \(r > 0 \)

Let \(x : \quad |x-w| < r \)

Let \(z \in B \quad |x-w| < |z-w| \)

Take \(t : \quad |t-w| > r \)

Suppose \(S \) converges at \(t \), i.e., \(t \) is in \(B \)
Then \(r < |t - w| \leq r \)

\[
\begin{align*}
\lim_{x \to \infty} & \quad y'' + y = 0 \\
& \quad x^2 y'' + x(1-x) = 0 \\
y(x) &= \sum A_p x^p \\
S &= \sum A_p (S - w)^p \quad \text{about } w \\
S \text{ number-seq. } \quad S_n = |A_n|^{\frac{1}{n}}
\end{align*}
\]

(i) \(S \) is totally divergent in case the final set of \(s \) is not bounded.

(ii) \(S \) is totally convergent in case \(s \) has limit 0.

(iii) \(S \) has the radius of convergence \(r \) in case the final set of \(s \) is bounded, \(S \) does not have the limit 0, and \(r \) is the greatest number which is a cluster point of \(s \).
\[\lim_{n \to \infty} \{ z_n \} \quad \varepsilon > 0 \quad N \quad n > N \]

\[|z_n - L| < \varepsilon \]

\(L \) is the limit of \(z \)

For \(\varepsilon > 0 \) and every \(N \), there is a pos. int. \(n > N \)

\[|z_n - P| < \varepsilon. \]

\[\sum_{p=-\infty}^{\infty} A_p \]

\[p = -2, 1, A_0, A_1, A_2, \ldots \]

\[\sum A_p (s-\omega)^p \]

\[\ell^2 \quad ? \quad \frac{1}{s-\omega} \]