Functions determined by successive approximations.

Theorem. If \(\mathbb{I} \), \(\mathbb{J} \) is an ordered number pair or point, then there exists only one function \(f \) with initial set the set of all numbers such that \(f \) contains \(\mathbb{I} \), \(\mathbb{J} \) and

\[f' = f, \]

\[\mathbb{J}, f' = f, \]

\[\mathbb{I}, f(a) = b \]

H.S. Wall - Creative Mathematics

Lemmas:
1. If \(\mathbb{I} \), \(\mathbb{J} \) is a point and \(f \) a function with initial set the set of all numbers, the following are equivalent:
 (i) \(f(a) = b \) and \(f' = f \).
(ii) If \(x \) is a number, then
\[
f(x) = b + \int_a^x f.
\]

2. Suppose \(f \) is a function with initial set the set of all numbers continuous at each of its points, and for each positive integer \(n \) and number \(x \),
\[
f_n(x) = b + \int_a^x f_{n-1}.
\]

Then, \(f_n \) is continuous at each of its points and
\[
f_{n+1}(x) - f_n(x) = \int_a^x (f_n - f_{n-1}).
\]

3. If \([A, B]\) is an interval containing the number \(a \), there exists a number \(M \) such that, if \(x \) is in \([A, B]\), then
\[
|f_1(x) - f_0(x)| \leq M
\]
and for each positive integer \(n \),
\[|f_{n+1}(x) - f_n(x)| \leq M \cdot \frac{|x-a|^n}{1 \cdot 2 \cdot \ldots \cdot n} \]

Aside:
\[\int_a^b |g| \leq \int_a^b |g| \leq (\sup_{x \in [a,b]} |g(x)|)(b-a) \]

4. If \(c \) is a positive number, there exists a positive integer \(N \) such that, if \(x \) is in \([A, B] \), then \(f_m(x) \) differs from \(f_n(x) \) by less than \(c \) if \(m > N \) and \(n > N \).

\[|f_m(x) - f_n(x)| < c \]

5. There exists a function \(f \) with initial set the set of all numbers such that, if \([A, B] \) is an interval and \(c > 0 \), there exists a positive integer \(N \) such that for \(x \) is in \([A, B] \) and \(n > N \), then
\[|f(x) - f_n(x)| < c \]
6. \(f \) is continuous at each of its points.

7. If, for each positive integer \(n \), \(\varepsilon_n \) is the function defined by \(f_n - f = \varepsilon_n \), so that \(f_n = f + \varepsilon_n \) and if \(\varepsilon_n \) is continuous, then if \(x \) is a number

\[
f(x) - \varepsilon(b + \int_a^x f(s) \, ds) = \int_a^x \varepsilon_{n-1}(s) \, ds - \varepsilon_n(x)
\]

The assumption that there is a number \(x \) such that

\[
|f(x) - \varepsilon(b + \int_a^x f(s) \, ds)| < \delta
\]

is a positive number \(\delta \) leads to a contradiction so that, for every number \(x \)

\[
f(x) = b + \int_a^x f(s) \, ds
\]