\[\sum_{p} A_p (s-w)^p \]

\[s_n = \frac{1}{A_n} y_n \]

1. final set of \(s_n \) is not bounded

Suppose \(S \) converges at \(z \neq w \)

\(x : 0 < |x-w| < |z-w| \)

\(S \) converges absolutely at \(z \)

\(\exists \epsilon > 1 \) \(\exists n \) pos. integer such that \(|A_n| > \frac{\epsilon}{|x-w|} \)

\(|A_n||x-w| > \epsilon \)

\(|A_n||x-w|^n > \epsilon^n > \epsilon > 1 \)

Contradiction

\(S \) is totally divergent.

2. \(z \) a point \(\neq w \)

\[\lim_{n \to \infty} s_n = 0 \Rightarrow \lim_{n \to \infty} |s_n| |z-w| = 0 \]

\[\Rightarrow \lim_{n \to \infty} |A_n| |z-w|^n = 0 \]
By comparison with geometric series, the power series must converge at \(\frac{1}{2} \). Totally convergent.

3) \(S \) has radius of convergence \(r \) if the final set of \(S \) is bounded, \(S \) does not have limit 0, and \(\frac{1}{r} \) is the greatest number which is a cluster point of \(S \).

\[
\sum_{n} |A_{n}| |z-w|^{n} = \sum_{n} (|A_{n}|^{r} |z-w|^{n})
\]

\[0 < |z-w| < \frac{1}{r}\]

\[
\frac{1}{r} < \frac{1}{|z-w|}
\]

\(m \) pos int such that if \(n \) pos int.

Then \(|A_{m+n}|^{\frac{1}{m+n}} < \frac{1}{|z-w|} \)

\[
0 \leq z \leq \frac{1}{2} \quad \beta \quad \frac{1}{|z-w|}
\]

\(\infty \)

\(|A_{m+n}|^{\frac{1}{m+n}} |z-w| < 1 \)
Actually, \[|A_{m+n}|^{\frac{1}{m+n}} < \beta = \frac{1-\varepsilon}{|z-w|} \]

\[|A_{m+n}|^{\frac{1}{m+n}} |z-w| < 1-\varepsilon \]

So again, comparing with the geometric series, we get that power series \(S \) converges at \(z \) where \(0 < |z-w| < D \).

Annulus Theorem

Suppose \(0 < m < M \), \(w \) is a point, and the point function \(f \) is analytic in the annulus \(A \) to which \(z \) belongs only in case \(z \) is a point \(z \) and \(m < |z-w| < M \).
(1) If \(m < r < R < M \), then

\[
\sum_{j=1}^{4} \int_{R_j} f = 0
\]
(2) If D_1 is the disc to which z belongs only in case $|z - w| < \frac{1}{M}$ and D_2 is the disc to which z belongs only in case $|z - w| < M$ then there is only one ordered pair θ, h such that g is an analytic function on D_1, h is an analytic function on D_2, $g(w) = 0$, and if z belongs to A then
\[f(z) = g \left(w + \frac{1}{z - w} \right) + h(z). \]

(3) There is a sequence $\{b_n\}_{n=-\infty}^{\infty}$ such that if $m < r < M$ and n is an integer, then
\[b_n = \frac{1}{2\pi i} \oint_{\Gamma} \frac{f(z)}{(z-w)^{r+n+1}} \, dz. \]
moreover, if \(f, g, h \) is the pair of functions from (2), then

\[
b_0 = h(\omega) \quad \text{and for each pos. int. } n,
\]

\[
b_n = \frac{g^{(n)}(\omega)}{n!}, \quad b_n = \frac{h^{(n)}(\omega)}{n!}
\]

Example: if \(f \) analytic

\[
f(z) = f(\omega) + f'(\omega)(z-\omega) + \frac{f''(\omega)}{2!}(z-\omega)^2 + \cdots
\]

\[
S = \sum_{p=0}^{\infty} A_p (z-\omega)^p
\]

\[
\sum_{p=-\infty}^{\infty} A_p (z-\omega)^p
\]

Laurent Series

\[
f(z) = \frac{1}{z-\omega}
\]

\[
f(z) = \frac{1}{(z-\omega)^3} + \frac{1}{z-\omega} + (z-\omega)^4
\]
Can we "reuse" our proof of the Cauchy Integral Formula to get the decomposition?