3.1 Seq., Series, common

\[F_{n} \text{ converges uniformly } (\text{domain}) \]
\[\exists > 0 \quad N \quad (m, n \geq N \text{ and } z \in R) \]
\[|f_{m}(z) - f_{n}(z)| < \varepsilon \]
\[z \in R \quad \exists f_{n}(z) \quad \text{point-seq.} \]

define \(g(z) = \lim_{n \to \infty} f_{n}(z) \)

\[f_{n} \to g \text{ uniformly uniform limit.} \]

Thus, \(\exists f_{n} \text{ uniform limit } g \).

and for all \(n \), \(f_{n} \) is continuous,

then \(g \) is continuous and if

\[C \text{ is a path in } R, \]
\[\lim_{n \to \infty} \int_{C} f_{n} = \int_{C} g \]
\[|\int_{C} f_{n} - \int_{C} g| \leq \int_{C} |f_{n} - g| \leq \varepsilon \cdot \lambda(C) \]
Thm 112. Weierstrass "M" test. Suppose \(\exists b_j \geq M_j \text{ for } j \in \mathbb{N} \) such that \(|f_j(z)| \leq b_j \). Then if \(\sum b_j \) converges, \(\sum f_j \) converges uniformly in \(R \). (Also converges absolutely in \(R \)).

Sec. 3.2 Taylor Series

\[
\sum_{n=0}^{\infty} A_n (z-a)^n
\]

\(S_0(w) = A_0 \)

\(S_1(w) = A_0 + A_1 (z-w) \)

\(S_2(w) = A_0 + A_1 (z-w) + A_2 (z-w)^2 \)

3 Thus about power series

1) \(w \) A S converges at \(z \neq w \)
1. $|x-w| < |z-w|$

2. $\sum_{n=1}^{\infty} a_n (z \in D)$ converges absolutely at x and uniformly on each closed subset of D.

3. Exactly one of the following holds (for $S = \sum_{n=1}^{\infty} a_n$):
 a) S is totally convergent
 b) S is totally divergent
 c) S has a radius of convergence r such that if $|x-w| < r$, S converges at x; if $|x-w| > r$, S diverges at x.

3. $s_n = \left| a_n \right|^{1/m}$
 a) final set of S is unbounded
 b) totally divergent
b) \(\lim_{n \to \infty} S_n = 0 \) totally convergent

c) \(\frac{1}{r} \) greatest cluster pt of \(s \)

Prof. Sec. 3.2

1. a) \(\sum_{n=1}^{\infty} \frac{z^n}{n!} \) What is \(A_n \) ? \(A_n = 1 \)

\(S_n = \frac{1}{A_n} = 1 \)

\(r = \) greatest CP \(r = 1 \)

b) \(\sum_{n=0}^{\infty} \frac{z^n}{(n+1)!} \)

\(A_n = \frac{1}{(n+1)!} \)

\(S_n = \{ \frac{1}{(n+1)!} \} \)

\((2n)! > n^n \)

\((2n)! \cdot \frac{1}{2n} > n^n \cdot \frac{1}{2n} \)

\(\frac{1}{(2n)!} \cdot \frac{\frac{1}{2n}}{\frac{1}{2n}} > \frac{1}{n^n} \)

\(\frac{1}{(2n)!} \cdot \frac{\frac{1}{2n}}{\frac{1}{2n}} < \frac{1}{n^n} \)

So \(\lim_{n \to \infty} S_n = 0 \) \(\Rightarrow \) \(S \) totally convergent.
\[\sum_{n=1}^{\infty} \frac{1}{(n+1)!} z^n = z \sum_{n=1}^{\infty} \frac{1}{(n+1)!} z^n = z^{-1} \sum_{n=1}^{\infty} \frac{z^n}{1+z^2} \cdot \sum_{n=1}^{\infty} \frac{z^n}{1+z^2} = e^z - (1+z) \quad \text{Totally Conv.} \]

3) \[\sum_{n=1}^{\infty} n^2 z^n \quad A_n = n \quad \exists n = n \quad \text{Final set unbounded} \Rightarrow S \text{ tot. div.} \]

Def. If \(K \) is a closed path and \(z \notin K \), then the winding number of \(K \) about \(z \), denoted by \(W(K, z) \), is the integer \(\frac{1}{2\pi i} \int_{C} \frac{1}{z-z} \)

\[\int_{C} \frac{1}{z-z} \, dz \]

\[\int_{K} \frac{1}{z-z} \, dz \]