Theorem (Residue Theorem)

Suppose \(R \) is a simply connected region, and \(\{w_p\} \) is a sequence of points inside \(R \), and \(f \) is a point-finite analytic in \(R - S \). If for each \(p \), \(1 \leq p \leq n \), \(k_p \) is the residue of \(f \) at \(w_p \), \(K \) is a closed path in \(R - S \), then

\[
\oint_{K} f = \sum_{p=0}^{n} k_p W(K, w_p).
\]
Recall $s_f = s_{\hat{f}}$.

Proof of \hat{g} is a sequence.

1. \[
\frac{\partial}{\partial \nu} (w_p + \frac{1}{2} - \frac{1}{w_p}) = 0
\]
2. \[
\frac{\partial}{\partial \nu} (w_p + \frac{1}{2} - \frac{1}{w_p}) = 0
\]
3. \[
\frac{\partial}{\partial \nu} \hat{g}(w_p + \frac{1}{2} - \frac{1}{w_p}) = 0
\]
4. \[
\frac{\partial}{\partial \nu} \hat{g}(w_p + \frac{1}{2} - \frac{1}{w_p}) = 0
\]
$$J_F = \sum_{p=0}^{n} - \int \frac{z}{(I-w_p)^2} \frac{w_p + I - w_p}{K}$$

Need Lemma: Using Cauchy Integral Then

For \(z \in \mathbb{R} - K' \), \(h \) analytic

$$\int_{K} \frac{h(z)}{(I-z)^2} = h(z) \int_{K} \frac{1}{I-I}$$

Then

$$\int_{K} \frac{h(z)}{(I-z)^2} = h'(z) \int_{K} \frac{1}{I-I} + h(z) \int_{K} \frac{1}{(I-z)^2}$$

$$= h'(z) 2\pi i \cdot W(K, z)$$

Also if \(y \in \mathbb{R} - K' \)

$$W(y + \frac{1}{I-y} / K, y) = \frac{1}{2\pi i} \int_{K} \frac{1}{y + \frac{1}{I-y} / K}$$

$$= \frac{1}{2\pi i} \int_{K} \frac{1}{y + \frac{1}{I-y} - y} \cdot \frac{1}{(I-y)^2}$$
\[\frac{-1}{2\pi i} \int \frac{1}{I-y} = -W(K, y) \]

Using these facts,

\[\int_f = - \sum_{p=0}^{n} \text{Residue at } w_p \cdot 2\pi i \cdot W(w_p + \frac{1}{y'}, K, w_p) \]

\[= 2\pi i \sum_{p=0}^{n} K_p \cdot W(K, w_p) \]

Def. \(f \) has order \(j \) at \(w \) if \(w \)

is a limit point of the initial set of \(f \), there is a \(V \) such that

\((*) \) there exist \(r > 0 \) \(i \) \(M > 0 \) such that if \(z \) is in \(J_f \) of \(f \) and \(V \)

\[0 < |z-w| < r \]

then \(|f(z)| \leq |z-w|^{-M} \)

and \(j \) is the largest number which

is not less than any such \(V \).
Exer. The point-function $I^{1/2}$ has order $1/2$

at 0.

$I^{1/2} = E\left(\frac{1}{2} \text{Ln}(1)\right)$

$z = \exp(\frac{1}{2} \text{Ln}(z))$

$\sum \frac{I^w = E(\text{w} \text{Ln})}{|z|^2 = |1z - w|^2}$

$= |z|^2 = |z|^2 1^{1/2}$

$|f(z)| = 1 |z - w|^2 M$

Then if f is analytic in R and

w is a point of R, then

(1) if f does not have negative order

at w

(2) if f does not have order at w, then $f(z) = 0$ for each z in R.

(3) if f has order j at w, then j is a non-negative integer and there is
A function g, analytic in \mathbb{R}, such that $g(w) \neq 0$ and $f(z) = (z-w)g(z)$ for each z in $\mathbb{R} - \mathbb{R}^3$.

$$f = \frac{f^{(s)}}{s!}(I-w)^s + \cdots$$

Coming Attractions

$$f(z) = g(z) \prod_{0}^{n} (z-w_p)^{j_p}$$

$$\frac{1}{2\pi i} \int \frac{f'}{f} = \sum_{k=0}^{n} j_p \cdot W(K, w_p)$$

$$\left(\ln f \right) = b_{-3} b_{-2} b_{-1} b_0 b_1 - n$$

$$0 0 + \frac{1}{\mathbb{R} - \mathbb{R}^3} (z-w)^{-2} (2-w)^{-n}$$