Case 3(b) One linear eigenvector, geometric multiplicity 1

Ex. \[\begin{align*}
 \dot{x} &= -2x \\
 \dot{y} &= x - 2y \\
 \begin{bmatrix}
 -2 & 0 \\
 1 & -2
 \end{bmatrix}
\end{align*} \]

Solve \[x(t) = Ae^{-2t}, \quad y(t) = Be^{-2t} + Ate^{-2t} \]

Phase portrait more complicated: suppose \(A > 0 \), then \(x > 0 \) and \(e^{-2t} = \frac{x}{A} \),

\[t = -\frac{1}{2} \ln \left(\frac{x}{A} \right), \]

\[y = \frac{Bx}{A} - \frac{x}{2} \ln \left(\frac{x}{A} \right) \]

All trajectories approach the origin as \(t \to \infty \). Slope at any point,

\[\begin{align*}
 \frac{dy}{dt} &= \frac{dy}{dx} \cdot \frac{dx}{dt} \\
 \frac{dy}{dx} &= \frac{-2Be^{-2t} + Ate^{-2t} - 2Ae^{-2t}}{-2Ae^{-2t}} \\
 &= \frac{-2B + A}{-2A} \to \infty \text{ as } t \to \infty
\end{align*} \]

Trajectories enter the origin along the
y-axis. Again the CP is an improper node.

Case 4 Complex Roots \(\lambda = \alpha + \beta i \):
\[
\begin{align*}
(x(t)) &= c_1 e^{\alpha t} \cos(\beta t) \Re \vec{e} + \\
(y(t)) &= c_2 e^{\alpha t} \sin(\beta t) \Im \vec{e}
\end{align*}
\]
\(\alpha < 0 \) motion toward CP
\(\alpha > 0 \) motion away CP

Ex: \(x = -x + 2y \)
\(y = -2x - y \)
\[
\begin{align*}
x(t) &= e^{-t} (A \cos 2t + B \sin 2t) \\
y(t) &= e^{-t} (B \cos 2t - A \sin 2t)
\end{align*}
\]
Let \(x = r \cos \theta, y = r \sin \theta, \)
\(R = (A^2 + B^2)^{\frac{1}{2}}, \quad R \cos \phi = A, \)
\(R \sin \phi = B, \) we have
\[
\begin{align*}
r \cos \theta &= R e^{-t} \cos (2t - \phi) \\
r \sin \theta &= -R e^{-t} \sin (2t - \phi)
\end{align*}
\]
So that \(r = R e^{-t}, \theta = -(2t - \phi), \)
and eliminating \(t, \) gives
\[
r = R e^{-\frac{\theta - \phi}{2}}
\]
giving a family of spirals. \(\alpha = -1 < 0 \)
spirals toward \(CP, \) \(\theta \) decreases
with increasing \(t, \) motion clockwise.

SPIRATIONAL POINT
Case 5: Pure Imaginary roots. Motion is periodic in time and trajectories are closed curves.

CENTER

\[
\begin{array}{c|c}
\lambda &= -(a+d)\lambda +(ad-bc)=0 \\
\text{ad} - bc &\neq 0
\end{array}
\]

Table

<table>
<thead>
<tr>
<th>Roots</th>
<th>CP</th>
<th>Stability</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\lambda_1 > \lambda_2 > 0)</td>
<td>Improper</td>
<td>Unstable</td>
</tr>
<tr>
<td>(\lambda_1 < \lambda_2 < 0)</td>
<td>Node</td>
<td>Asymptotically stable</td>
</tr>
<tr>
<td>(\lambda_2 < 0 < \lambda_1)</td>
<td>Saddle Point</td>
<td>Unstable</td>
</tr>
<tr>
<td>(\lambda_1 = \lambda_2 > 0)</td>
<td>Proper or</td>
<td>Unstable</td>
</tr>
<tr>
<td>(\lambda_1 = \lambda_2 < 0)</td>
<td>Improper Node</td>
<td>Asympt. Stable</td>
</tr>
<tr>
<td>(\lambda = \alpha \pm \beta i)</td>
<td>Spiral Pt</td>
<td>Unstable</td>
</tr>
<tr>
<td>(\alpha > 0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\alpha < 0)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
\[\lambda_1 = \beta i, \quad \lambda_2 = -\beta i \quad \text{Center Stable} \]

Lorenz System \[u = f(u) \]

\[\begin{cases}
 \dot{x} = -\sigma x + \sigma y \\
 \dot{y} = -xy - yz + \epsilon \\
 \dot{z} = -bz + xy + b(\tau + \sigma)
\end{cases} \]

Here \(b, \tau, \sigma > 0 \) constants

Derived from a version of the Navier-Stokes equations used for weather prediction after many (stastic) simplifying assumptions.

James Gleick's Chaos

The variation equations for the system are \(\dot{u} = A(u)u \) where \(u \) is a sol. to \((*)\) and

\[A(u) = \begin{bmatrix} -\sigma & 0 & 0 \\
 -\sigma - z & -1 & -x \\
 y & x & -b \end{bmatrix} \]
Since \(\text{Tr} A(u) = -\alpha -1 - b < 0 \), the region occupied by the time-asymptotic trajectories, the attractor, has dimension less than 3.

Construction Middle Third Cantor Set

\[
\begin{align*}
S_0 &: 0 \quad \frac{\ln 2}{\ln 3} \quad 1 \\
S_1 &: 0 \quad \frac{1}{3} \quad \frac{\ln 3}{\ln 3} \quad 1 \\
S_2 &: 0 \quad \frac{\ln 3}{9} \quad \frac{1}{3} \quad \frac{3}{9} \quad 1 \\
S_n &: \quad \bigcap S_n = K
\end{align*}
\]