SVD

1) \(A = Q_1 \Sigma Q_2^T \) given \(m \times n \)

\[
AA^T = Q_1 \Sigma Q_2^T Q_2 \Sigma^T Q_1^T = Q_1 \Sigma \Sigma^T Q_1^T
\]

\(m \times n \) matrix

\(Q_1 \) eigenvector matrix for \(A A^T \)

\(\Sigma \) eigenvalue matrix for \(A A^T \)

\(\Sigma^T \Sigma \) with \(\sigma_1^2, ..., \sigma_p^2 \) on diagonal.

Likewise

\[
A^T A = Q_2 \Sigma^T Q_1^T \Sigma \Sigma^T Q_2^T = Q_2 \Sigma \Sigma^T Q_2^T
\]

\(Q_2 \) is the eigenvector matrix for \(A^T A \)

\(\Sigma^T \Sigma \) has the same \(\sigma_1^2, ..., \sigma_p^2 \) but

\(n \times n \)

2) \(A^T A \) is symmetric, so it has a complete set of eigenvectors
let $\mathbf{x}_1, \mathbf{x}_2, \ldots, \mathbf{x}_n$ be an orthonormal basis for \mathbb{R}^n consisting of eigenvectors.

These get into the calculation of VQ_2:

$$A^T A \mathbf{x}_j = \lambda_j \mathbf{x}_j \quad \text{with} \quad \mathbf{x}_j^T \mathbf{x}_j = 1.$$

Eigenvalues are nonnegative:

$$(\langle \mathbf{x}_j, \mathbf{x}_k \rangle^T \mathbf{x}_j = (A^T A \mathbf{x}_j)^T \mathbf{x}_j = (A \mathbf{x}_j)^T (A \mathbf{x}_j) \geq 0)$$

$$\lambda_j = \| A \mathbf{x}_j \|_2^2 \geq 0.$$

Suppose $\lambda_1, \ldots, \lambda_r$ are positive and remaining $n-r$ of $A \mathbf{x}_j$ and λ_j are zero. ($\sum \lambda_j = \| A \mathbf{x}_j \|_2^2$)

For $1 \leq j \leq r$, let $\sigma_j = \sqrt{\lambda_j}$ and

$$q_j = \frac{1}{\sigma_j} A \mathbf{x}_j.$$

The q_j's are pairwise orthogonal and have norm 1.
\[
\frac{q^T q}{\lambda e} = \frac{1}{\sigma_x} \frac{1}{\sigma_e} (A x^j)^T (A x_e)
\]

\[
= \frac{1}{\sigma_x \sigma_e} \frac{j}{x^j} (A^T A x_e)
\]

\[
= \frac{\lambda e}{\sigma_x \sigma_e} x^j x_e = S_\lambda e
\]

By Gram–Schmidt, extend the \(q_j \)s to an orthonormal basis of \(R^m \).

\(q_1, q_2, \ldots, q_m \) become the columns of the matrix \(Q \).

Then \((Q^T A Q_2)_{ij} \) is \(q_i^T A x_j \)

(row \(i \) times matrix \(x \) column \(j \) vector)

\(q_i^T A x_j = 0 \) if \(j > r \) because \(A x_j = 0 \).
\[q^T Ax_i = q^T (0, 0, q_i) \text{ if } i \leq r \]

since \(Ax_i = 0 \).

But \(q^T q = 5 \), so only nonzero
in \(\Sigma = Q_1^T A Q_2 \) pick the
first \(r \) diagonal entries \(q_{11}, \ldots, q_{rr} \).

Then \(A = Q_1 \Sigma Q_2^T \)

SVD decomposition.

Textbook \(A = \begin{bmatrix} -2 & 11 \\ -10 & 5 \end{bmatrix} \)

5.3

page 37

A sym. \(g(x) = \langle Ax, x \rangle \)

Then \(g(x) \) is real, there exist
numbers \(m \in M \) such that
\[
m \| x \|^2 \leq \langle Ax, x \rangle \leq M \| x \|^2
\]

\[
m \leq \frac{\langle Ax, x \rangle}{\| x \|^2} \leq M
\]
Here the variational formulation or minimization idea again enters.

Back to solving \(Ax = b \) with the added assumption that \(A \) is SPD. One of the most important methods for solving this system for very large \(n \) is called the conjugate gradient method.

Consider the quadratic functional \(f: \mathbb{R}^n \to \mathbb{R} \) given by

\[
f(x) = \frac{1}{2} \langle Ax, x \rangle - \langle b, x \rangle + C
\]

Claim: minimizing the functional \(f \) is equivalent to solving \(Ax = b \).

Note the gradient of \(f \) at \(x \) is

\[
\nabla f(x) = A x - b
\]
from calculating a necessary condition for \(\varepsilon \) to minimize \(f \) is that
\[
\nabla f(\varepsilon) = A \varepsilon - b = 0
\]
This is also sufficient if \(A \) is SPD for then \(WA \) is nonsingular and
\[
Q(x, y) = \langle Ax, y \rangle = \langle x, Ay \rangle
\]
define a new inner product with where \(N(x) = Q(x, x)^{1/2} \) in which
\[
f(x) = \frac{1}{2} N(x - A^{-1}b)^2
\]
\[
N(x - A^{-1}b)^2 = Q(x - A^{-1}b, x - A^{-1}b)
\]
\[
= \langle A(x - A^{-1}b), x - A^{-1}b \rangle
\]
\[
= \langle Ax - b, x - A^{-1}b \rangle
\]
\[
= \langle Ax, x \rangle - \langle Ax, A^{-1}b \rangle - \langle b, x \rangle + \langle b, A^{-1}b \rangle
\]
\[
= \langle Ax, x \rangle - 2 \langle b, x \rangle + \langle b, A^{-1}b \rangle
\]
\[
= 2f(x)
\]
where c is $\frac{1}{2} < b$, $A^{-1}b >$.

$E = A^{-1}b$ is the unique minimizer of f.

Computationally, how do we minimize such an f? We can try “steepest descent”.
Build an infinite sequence.

1. Pick x_0.

2. For $n \geq 1$, define

$$x_{n+1} = x_n - \alpha_n \nabla f(x_n)$$

where α_n is a “small” stepsize.

$$
\begin{array}{c}
\xrightarrow{\alpha_n} \\
\xrightarrow{\nabla f(x_n)} \\
\xrightarrow{x_n+1}
\end{array}
$$