ODE II
April 12

Nemytskii \& Stepanov
Ovad. Th. of DE

Def. A point y is an ω-limit point of a solution (trajectory) $g(p,t)$ if there exists a sequence $t_1, t_2, \ldots \to +\infty$ such that $\lim_{n \to \infty} g(p, t_n) = y$. A point y is called an α-limit point if there exists a seq. $t_1, t_2, \ldots \to -\infty$ such that $\lim_{n \to \infty} g(p, t_n) = y$.

The set of all ω-limit points of a given trajectory is called its ω-limit set and denoted by Ωp. The α-limit set Λp of a given trajectory...
is the set of its α-limit points. Both Ω_p and Λ_p are closed sets. Thus, if q is either an w- or α-limit point of a traj. $g(p, t)$, then all other points of the trajectory $g(q, t)$ are also w- or α-limit points respectively of the given traj. $g(p, t)$. In other words, both w- and α-limit sets of a trajectory consist of whole trajectories.

Clarify trajectories according to properties of α- and w-limit sets. A solution (or traj.) recedes in the positive direction if it has no w-limit points. A solution $g(p, t)$ is asymptotic in
The positive direction if there exist w-limit points, but they do not belong to this solution.

A solution (p, t) is stable in the positive direction in the sense of Poisson if it has w-limit points which belong to this solution.

Symbol definitions: describe behavior of solutions as $t \to -\infty$.

1) Singular point as $P=p$, $q(p, t) = P$ is a trajectory. Every CP is its own α- as well as w-limit point, hence Poisson stable.

Set of singular points is closed: $x_1, x_2, \ldots \rightarrow y \rightarrow f(x_1), f(x_2), \ldots \rightarrow f(y)$

Moreover any closed set is the singular set for some dynamical system.
Ex. \[
\begin{align*}
\dot{x} &= -y + (x^2 + y^2 - 1) x \sin \left(\frac{1}{x^2 + y^2 - 1} \right) \\
\dot{y} &= x + (x^2 + y^2 - 1) y \sin \left(\frac{1}{x^2 + y^2 - 1} \right)
\end{align*}
\]
for \(x^2 + y^2 \neq 1 \) and \(x^2 + y^2 = 1 \)

In polar coordinates:
\[
\begin{align*}
\frac{dr}{dt} &= r \left(r^2 - 1 \right) \sin \left(\frac{1}{r^2 - 1} \right) \\
\frac{d\theta}{dt} &= 0 \quad r = 1
\end{align*}
\]
and \(\frac{d\theta}{dt} = \frac{1}{r} \)

In every neighborhood of the periodic solution
\[
x(t) = \cos (\Theta + t), \quad y(t) = \sin (\Theta + t)
\]
there are infinitely many periodic solutions
\[
x(t) = \Gamma_k \cos (\Theta + t), \quad y(t) = \Gamma_k \sin (\Theta + t)
\]
where \(\Gamma_k = \sqrt{1 + (2 \kappa t)} \) and satisfies
\[\frac{1}{r^2 - 1} = 0. \] In each ring-shaped region between 2 consecutive circles, the trajectories are spirals approaching these two circles. Every one of these circles corresponds to a limit cycle.