1) Show that if \(\{v_1, \ldots, v_n\} \) is a basis (not necessarily orthogonal) of a subspace \(V \), then the closest point \(v \) to \(y \) in \(V = \text{span}(\{v_1, \ldots, v_n\}) \) is given in terms of the Gramian matrix \(M_{ij} = \langle v_i, v_j \rangle \).

2) Let \(\mathcal{A} \) be the operator defined by

\[
\mathcal{A} u = -u''
\]

acting on the space \(C^2[0,1] \) of functions satisfying zero Dirichlet boundary conditions.

If \(k \) is a positive integer, then \(\lambda = k^2 \pi^2 \) is an eigenvalue with associated eigenfunction \(\sin(k\pi x) \), i.e.

\[
\mathcal{A} f = \lambda f \quad \Rightarrow \quad 0 = f'' + \lambda f
\]

Fix \(n \) and consider the corresponding discrete problem on a finite difference.
grid of $n-1$ points.

(Solving $-u''(x) = g(x)$)

\[u''(x) = \frac{u_3 - 2u_2 + u_1}{(\Delta x)^2} = g(x) \]

\[u''(x_3) \begin{bmatrix} -2 & 1 & 0 \\ 1 & -2 & 1 \\ 0 & 1 & -2 \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \\ u_3 \end{bmatrix} = -\alpha^2 \begin{bmatrix} g_1 \\ g_2 \\ g_3 \end{bmatrix} \]

\[\Delta x = \frac{1}{n} \]

\[-n^2 \lambda \xi = \Lambda \xi \]

Solve this linear system.

Consider $-n^2 \lambda \xi = \Lambda \xi$, where A is the matrix with ones on the sub- and superdiagonals and -2 on the main diagonal. The eigenvalues of the matrix $-n^2 A$ are given by

\[\lambda_k = 2 \left(1 - \cos \left(\frac{\pi k}{n} \right) \right), k = 1, \ldots, n-1 \]

with associated eigenvectors.
with associated eigenvectors
\[(u_K) = \sin \left(\frac{\pi K}{n} \right), \quad K = 1, \ldots, n-1 \]

What happens in the limit as \(n \to \infty \)?

As \(n \) increases, any iterative method such as Jacobi (simultaneous relaxation) becomes less and less effective, especially when \(n \approx 100 \).

The method becomes useless.

(Recall the Jacobi that if \(A \) is strictly diagonally dominant, i.e.,
\[\sum_{j \neq i} |A_{ij}| < |A_{ii}| \quad \text{for all } i, \]

\[\|I - D^{-1}A\|_\infty = \max_i \left(\sum_{j \neq i} |A_{ij}|/|A_{ii}| \right) < 1, \]
\[g(x) = D'(b - (A - D)x) \]
\[= D'b + (I - D'A)x \]
\[\text{is a contraction! Guaranteed convergence.} \]

Observation: The high frequency components of the input are quickly reduced by a few Jacobian sweeps, while the low frequency components of the error are reduced very slowly.

\[f = \langle g', f \rangle + \cdots \]
Modify Jacobi by using several nested grids. This is the idea behind MULTIGRID methods. $O(n)$ FFT $O(n \log n)$