Lecture 9: The Radon Transform
Radon Transform

Suppose \(f \) is a function from the plane into the reals. For \((t, \omega) \in \mathbb{R} \times S^1 \) and \(\ell_{t, \omega} = \{ x \in \mathbb{R} : \langle x, \omega \rangle = t \} \) the line determined by \(t \) and \(\omega \), define

\[
\mathcal{R} f(t, \omega) = \int_{\ell_{t, \omega}} f \, ds = \int_{-\infty}^{\infty} f(t\omega + s\omega^{\perp}) \, ds
\]

This is the Radon transform of \(f \) at \((t, \omega) \), and defines an operator with takes \(f \) and gives back a function defined on ordered pairs \((t, \omega) \). It is a linear operator on an infinite dimensional space of functions. For \(\mathcal{R} \) to be well-defined, \(f \) need not be continuous or of bounded support. Sufficient that \(f \) be locally integrable and \(\int_{-\infty}^{\infty} |f(t\omega + s\omega^{\perp})| \, ds < \infty \) for all \((t, \omega) \in \mathbb{R} \times S^1 \). “Natural Domain” of the Radon transform:

1. \(f \) is regular enough that restriction to a line is locally integrable
2. \(f \) decays fast enough that improper integrals converge.
Radon Transform Properties

Neither of the functions $f(x, y) = 1$ nor $f(x, y) = \frac{1}{x^2 + y^2}$ are in the natural domain of \mathcal{R}. The constant one function is clearly not integrable over any line in the plane - the integral is not finite. The second function does decay rapidly at $\|x\| \to \infty$, but “blows up” in a neighborhood of the origin. Remember \mathcal{R} is a linear operator mapping one infinite dimensional space into another. Since it is linear, our intuition from matrices in linear algebra carries over in large measure.

1. Linear: $\mathcal{R}(\alpha f) = \alpha \mathcal{R}(f) \quad \mathcal{R}(f + g) = \mathcal{R}(f) + \mathcal{R}(g)$

2. Even: $\mathcal{R}(-t, -\omega) = \mathcal{R}f(t, \omega)$

3. Monotone: If f is nonnegative, $\mathcal{R}f(t, \omega) \geq 0$ for all (t, ω).
Closed Form Expressions

Suppose that χ_E is the characteristic function of the point set E in the plane. The Radon transform of χ_E, is given by $R_{\chi_E}(t, \omega) =$ the length of the intersection of $\ell_{t, \omega} \cap E$. For a concrete example, let $B_1 = B_1(0)$ be the unit disk with center 0. The closed form expression for the transform is

$$R_{\chi_{B_1}}(t, \omega) = \begin{cases} 2\sqrt{1-t^2} & \text{if } |t| \leq 1 \\ 0 & \text{if } |t| > 1 \end{cases}$$

Note that $|t| > 1$ implies that $\ell_{t, \omega}$ does not intersect B_1.
Surface Plots Characteristic Function
Intensity Plots Characteristic Function
Radon on Radial

A function f on \mathbb{R}^n is radial if its value depends only on distance to the origin: $f(x) = F(\|x\|)$ where F is a function of a single variable.

$$\mathcal{R} f(t, \omega) = \int_{-\infty}^{\infty} f(t, s) \, ds = \int_{-\infty}^{\infty} F(\sqrt{t^2 + s^2}) \, ds =$$

Using the change of variable $r^2 = t^2 + s^2$, $2r \, dr = 2s \, ds$, gives

$$\mathcal{R} f(t, \omega) = 2 \int_{t}^{\infty} \frac{F(r)r \, dr}{\sqrt{r^2 - t^2}}$$

We want to find f, given $\mathcal{R} f$. Hope there is an inverse \mathcal{R}^{-1} from functions on $\mathbb{R} \times S^1$ such that

$$\mathcal{R}^{-1} \circ \mathcal{R} = f$$
Measure Zero

A subset $E \subset \mathbb{R}^n$ has n-dimensional measure zero if for any $\varepsilon > 0$ there is a collection of balls $B_{r_i}(x_i)$ so that

$$E \subset \bigcup_{i=1}^{\infty} B_{r_i}(x_i)$$

For example any finite point set in \mathbb{R}^n has measure zero, any countable point set has measure zero (for example the set of rationals in \mathbb{R}^1 or the ordered rational pairs in \mathbb{R}^2 has measure zero. If f is a function on \mathbb{R}^n and the set of points where $f \neq 0$ has measure zero, then

$$\int_{\mathbb{R}^n} |f(\mathbf{x})| \, d\mathbf{x} = 0$$
Measure Zero

If \(\phi \in L^1(\mathbb{R}^n) \), then

\[
\int_{\mathbb{R}^n} f(x) \phi(x) \, dx = 0
\]

This sort of expression is what we realistically measure in image and signal processing. It says that we cannot distinguish a function supported on a set of measure zero from the zero function. We can identify two functions which differ only on a set of measure zero, lumping them into the same equivalence class. This is the approach you took in your measure theory class for the development of the Lebesgue integral.

Proposition If \(f \) is a function in the plane, which is supported on a set of measure zero, then the set of values \((t, \omega) \in \mathbb{R} \times S^1 \) for which \(\mathcal{R} f(t, \omega) \neq 0 \) is itself a set of measure zero.